Felix Baastad Berg

Spatial Representation Learned in the Recurrent Memory
of Artificial Neural Agents in Open-Ended Reinforcement
Learning

Exploring Biologically Inspired Memory-Driven Navigation and Im-
plicit Planning.

Masters thesis in Physics and Mathematics
Supervisor: Benjamin Dunn
June 2025

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

@ NTNU

Kunnskap for en bedre verden

Abstract

Encoding and exploiting spatial knowledge is critical for intelligent foraging, whether in animals or ma-
chines. Building on this insight, we created a deep-reinforcement-learning agent whose Long Short-Term
Memory (LSTM) core must remember and plan in a two-dimensional grid world where survival is the
sole objective. With Proximal Policy Optimization, we trained several variants that differ only in three
biologically inspired priors: an auxiliary path-integration head that compels the agent to estimate its
own position, a sparsity prior that removes 90 % of weights to mimic economical brain wiring, and a
continuous attractor network that supplies an explicit grid-cell basis for metric space.

Our simulations show that pruning the network does not harm reward and that adding the path-
integration head markedly boosts performance, letting agents range farther from the origin and return
more often to places where positional uncertainty is highest. Introducing a continuous attractor net-
work leaves learning curves unchanged — even though it shares the LSTM’s memory budget — yet
it still develops hexagonal firing fields and shows signs of encoding other task-relevant variables, such
as predator distance. Generalized Linear Models and neural-decoding analyses further reveal that, in
sparse path-integrating agents, only a small subset of neurons carries the bulk of spatial information,
indicating an efficient representation. The agents also showed an understanding of depletion: the chance
of revisiting a patch was lower after eating there, as the area had been depleted of food.

Taken together, these results demonstrate that an artificial agent can navigate and remember with
orders of magnitude fewer neurons than many insects while maintaining interpretable, brain-like codes.
By deriving and implementing grid-cell dynamics in JAX, we connect models of artificial and biological
spatial cognition, enabling systematic comparisons between neural data and supporting future work on
attractor-based representations.

Contents

[1.3_ Relation to the TMA4500 Project Report|
[[4 Acknowledgements|

I Designing and Simulating the Reinforcement Learning System|

[2__Foundations of Reinforcement Learning and Proximal Policy Optimization|

[2.1.1 Partially Observable MDPs|0 oo o
P27 Policy]
[2.2.1 Long Short Term Memory (LSTM)|.

[2.3 Defining the RL objectivel
2. olicy Gradient Methods|
2.5 PG with learned baselinel o
2.6 Trust Region Formulation|o oo
2.7 Importance sampling| L
2.8 Proximal Policy Optimization (PPO)[.
2.9 General Advantage Estimator (GAE)|. L o

[3.5 Defining the neural grid w| L
[3.6 Direction preference and Velocity Field Wa] . « « « v v v oo v v e e e e e

[3.9 Stability Analysis of the kquation| 00000000

3.9.1 tability of Kigenvalues|
[3.9.2 FEigenmodes |
B.10 Parametersl e e
[3.11 Implementation|
[3.12 Analytical Implementation for Computational BfHciency] v v v v v v

4 Environment and Model Implementation|
4.1 States (Environment)|
4.2 Actions and dynamics| L L

L3 Rewardl - - o o v v oo e e

4.5.2 Entropy loss| e
.5.3 uxiliary loss|

4.6 Implementation|. Lo

| SO UL A

—
= O © 000 I

4.6.1 Algorithm|. e 43

4.6.2 Implementation in JAX] o o o oo 43

1.6.5 FAS Research Computing CIUsters| v v v v v ittt 44

[4.6.4 Parametersl e e 45

|5 Experiments| 46
5.1 arly training| L L e 46
b.2 Comparing architectures| oL 47
(I Statistical Analysis of Space Representation| 51
|6 Theory — Memory Analysis| 51
6.1 General Linear Models! 51
6.2 Decoding Spatial Representations from Hidden States] 52
6.3 Single Neuron Decoding Theory|. o o 53
6.4 Decoding Grid Cells| o o 54
6.4.1 Architecture Tl e 55

[6.42 Architecture 21 56

|7 Results — Memory Analysis| 56
[[1 Behavioural Decision GLM| 56
7.2 Neural decoding — Correction for Model Biases|. 57
2.1 roblems with Normal Ridge Regression on an Episodel 57

[7.2.2 Problems with Continuous, Temporal Auto-Correlated Datal. 58

[7.2.3 Addressing the Feature Space Problem: Training on Multiple Episodes|. 59

[7.2.4 Addressing the Output Space Problem: Temporal-Chronological Split in Train and |

| dest Datal o o 60
7.3 Neural Decoding — Spatial Representation Results| 61
[7.3.1 Comparing RMSE Relative to Origin|. 61

(.32 Relative RMSEl o o 61

[7.3.3 Spatial Representations Across Training| 62

ith CANS . . . o e 63

[7.3.5 Summary of Encoding Findings|. o oo 63

[7.4 Single Neuron Decoding] L 64
[(.4.1 Contribution Distributions] o 64

[7.4.2 Top Contributions Comparison|« o v vt vt i 65

[7.4.3 RMObE after Removing Top Contributing Neurons| 66

44 Coefficient Profied 67

[t.h Grid Cells — Results. o 67
[7.5. Architecture 11 e 67

[(.5.2 Architecture 2 e 70
[B_Conclusion 75
9 Future Workl 76
|IA° Appendix - Lyon Poster| 80
IB Appendix - Lyon talk] 82
IC Appendix - COSYNE 2025 Abstract| 88

1 Introduction

Animals are hypothesized to create spatio-temporal maps of their environment during foraging, enabling them
to remember locations of food sources and predators [I]. This cognitive ability is crucial for survival, as it
helps them determine which areas to explore and which to avoid. However, deciphering the long-term neural
dynamics and memory underlying such behavior has been proven difficult . One approach to
better understand these processes is to develop computational models that mimic the function of the neural
circuits found in biological organisms.

To study this setting further, we consider artificial agents navigating a 2D grid-world environment where they
must satisfy fundamental needs such as thirst, hunger, and sleep while avoiding predators. Our agent’s neural
architecture is biologically inspired, incorporating realistic sensory inputs, reward structures and behavioral
constrains. Unlike conventional reinforcement learning (RL) agents that rely on explicit positional data, our
model leverages memory, aiming for the agent to implicitly remember survival-relevant locations and their
relative positions.

This thesis has two main objectives. First, we aim to simulate animal foraging behavior by incorporating
biologically plausible priors into reinforcement learning models, and understanding which priors are important
to recreate natural foraging behavior. Second, we analyze how spatial information is encoded in the agent’s
memory. By examining different neural architectures, we seek to qualitatively assess their ability to represent
physical space and compare their memory mechanisms — work that potentially can be compared with brain
recordings to bridge the gap between artificial and natural intelligence.

1.1 Related work

There already exists a significant amount of research within RL for 2D grid worlds [2] 8], @, Bl 6]. Works like
Tizhoosh [7] and SunWoo and Lee [6] have explored path search and navigation in grid worlds using RL,
focusing on performance optimization and environment-specific tuning.

The most commonly cited paper for LSTM was published in 1997 [8] and LSTM has since been an area
of active research [0, [I0| II]. The introduction of LSTM revolutionized sequence modeling by enabling
networks to capture temporal dependencies. This concept has been widely adopted in RL, particularly in
tasks requiring memory or temporal context. More recent works, such as those by Grzelczak and Duch [4],
integrate deep RL with LSTM architectures for path planning and memory modeling. However, most existing
work on biology-inspired navigation involves small, fully observable arenas with few-to-no obstacles, partly
because recording neural activity in naturalistic settings is challenging.

Grid cells were first reported in the medial entorhinal cortex by Hafting et al. (2005) [12]. A large body of
theory treats this code as a two-dimensional continuous attractor: a recurrent network whose activity bump
translates in proportion to integrated velocity. The seminal model of Burak & Fiete (2009) showed that such
networks can maintain accurate path integration over behaviourally relevant timescales [I3], and later work
has added realistic spiking dynamics and robustness to noise (e.g. Sdgodi et al., 2024) [14].

In parallel, deep-learning studies have demonstrated that grid-like representations can emerge or be pro-
grammed in task-optimised networks. Cueva & Wei (2018) found that training recurrent networks for self-
localisation from velocity cues alone yields units with hexagonal firing fields [I5]. Banino et al. (2018)
extended this idea to actor—critic agents, showing that imposing a grid-like latent space improves 3-D navi-
gation performance [16].

A particularly relevant work is Craftax [I7], a recent benchmark designed for open-ended reinforcement
learning. Craftax builds upon Crafter [I8], but significantly expands its complexity and computational
efficiency. By implementing a JAX-based architecture (see [subsubsection 4.6.2 for introduction to JAX),
Craftax enables large-scale reinforcement learning experiments to run orders of magnitude faster than prior
benchmarks, making it feasible to study long-term planning, exploration, and memory-driven behaviors
without excessive computational costs. Notably, Craftax introduces multi-floor environments, a diverse set
of enemies, and mechanics such as enchantments, potions, and a hierarchical progression structure. These
features make it an appealing environment for evaluating agents that must integrate past experiences, manage
survival constraints, and develop strategies dynamically. Given its emphasis on memory and long-term
reasoning, Craftax closely aligns with our goal of developing biologically inspired agents that navigate and

adapt in complex environments. Our work heavily modifies Craftax to be suitable for neuroscience research,
including generating natural environments.

1.2 Contributions

During my research stay at Harvard University (Fall 2024), I collaborated with the Rajan Lab on initial
statistical analyses of spatial representations, testing neural-decoding scripts and single-neuron metrics. That
groundwork shaped my project thesis [19]. For the master’s thesis I extend neural architectures built on code
originally developed by the Rajan Lab, and I have done extensive additional decoding. Thus, the work
presented here is a joint effort: my contributions build on their foundations, guided by the team’s continual
advice and support.

This work advances our understanding of memory-driven reinforcement learning in biologically inspired agents
by demonstrating how RL can enable efficient spatial navigation and decision-making in complex environ-
ments.

We show that agents trained via RL successfully explore arenas to locate resource-rich patches and strate-
gically travel between previously visited locations, even when these locations are outside the agent’s current
field of view and have remained unobserved for hundreds of timesteps. Remarkably, this level of navigational
planning is achieved with neural architectures that are significantly smaller than those of insects (including
fruit flies [20] 21]), with sparse connectivity constraints similar to those found in insect brains.

To better understand the role of memory in navigation, we analyze the hidden states of the agent’s neural
network, performing both neural and behavioral decoding to investigate how spatial information is stored
and utilized. This allows us to evaluate whether simple memory mechanisms and reinforcement learning
alone are sufficient for effective navigation in large, partially observable foraging environments.

Additionally, we examine the impact of incorporating a path integration module, which enables the agent to
continuously update its internal representation of position. By comparing agents trained with and without
explicit path integration, we find that path-integrating agents explore further away from origin and adjust
their behavior in response to spatial uncertainty. These agents also develop clearer neural representations of
past and future locations, supporting the emergence of internal maps — an ability fundamental to biolog-
ical navigation. Furthermore, we investigate whether sparsely connected networks can achieve the same or
better performance as fully connected ones, offering insights into the efficiency of biologically inspired neural
architectures.

We have aslo developed two continuous attractor network modules in JAX that integrates velocity with
almost no errors that can be implemented in any Flax Neural network architecture. The first is a numerical
integrator that mirrors key biophysical features of entorhinal grid cells and can co-train with large brain-
like networks. THe second is a lightweight analytical integration — ideal when velocity inputs are explicit
— that updates the activity bump in closed form. Together they let researchers choose between biological
richness and computational economy, and, to out knowledge, they constitute the first open-source, JAX-native
toolkit for adding grid-cell dynamics to deep networks. In this thesis, both modules have been implemented
in architectures, but only the analytical CAN has been tested extensively for computational complexity.

To substantiate the novelty and relevance of this work, Appendix A and B contain a poster and presentation
from a seminar at the Lyon Neuroscience Research Centre [22], while Appendix C includes an abstract
submitted to COSYNE 2025. Additionally, parts of this research has been submitted as a pre-print to
NeurIPS; you can view it via the link provided [23].

1.3 Relation to the TMA4500 Project Report

This master’s thesis expands upon the project report I completed for the course TMA/500 — Industrial
Mathematics [19). Consequently, certain material is reused, other parts are revised, and several sections are
entirely new. To maintain transparency, each chapter (from now on) that draws on the project report begins
with a brief note indicating which subsections originate from that previous work.

From the introduction, sections are adapted from [I9] and retain many similarities with the
original, despite being revised for this thesis.

1.4 Acknowledgements

I would like to express my gratitude to the Rajan Lab at Harvard Medical School for the opportunity to
contribute to this project. In particular, I thank Ryan Badman and Riley Simmons-Edler for their guidance
and for including me in their work. I appreciate their support and insights, which have greatly enriched my
understanding of memory-driven reinforcement learning.

I am also grateful to my supervisor, Associate Professor Benjamin A. Dunn. His expertise in grid-cell research
and computational neuroscience set the intellectual foundation for this thesis, and his steady encouragement
gave me the confidence to tackle such an ambitious topic.

ChatGPT was actively used to refine and rephrase text for improved readability. Additionally, ChatGPT
assisted in writing the code.

1.5 Structure of the thesis

This thesis is divided into two main parts:

Part 1 — Designing and Simulation the Reinforcement Learning System (Sections 2 - 5). This
part introduces the foundations for the simulations, and then presents the results of the simulations. Section
2 introduces the theoretical foundations of reinforcement learning and derives Proximal Policy Optimization
(PPO) from first principles. Section 3 introduces grid cells and presents continuous attractor models as a
way of implementing them in a neural network. Section 4 details the implementation of PPO in our specific
setup, including the environment design, neural network architecture, and algorithmic framework. Section
5 presents the simulation results and evaluates the performance of different network architectures.

Part 2 — Statistical Analysis of Space Representation (Sections 6 - 7). This part introduces
methods to analyses the memory of the agents that was simulated in part 1, and then presents the results of
the memory analysis. Section 6 introduces the theoretical background of Generalized Linear Models, neural
decoding, and techniques to analyse the continuous attractor networks. Section 7 presents experimental
results, including behavioral decision modeling, neural decoding, grid-cell usage, and explores how spatial
information is encoded and utilized in the agent’s memory.

Finally, section 8 and section 9 summarize the findings, discuss key insights, and outline potential directions
for future research.

1.6 Contribution to Sustainability

Although this project is primarily motivated by questions in computational neuroscience, two practical ben-
efits could have modest sustainability value. These relate to the United Nations Sustainable Development
Goals (SDGs), which identify key areas for global progress such as health, infrastructure, and environmental
protection:

Energy-efficient autonomy for search-and-rescue and delivery. Our agents maintain strong naviga-
tion performance even after 90 % weight pruning, so the policy could fit on low-power edge hardware instead
of relying on cloud compute. Such lightweight controllers could extend the battery life of delivery robots

or search-and-rescue drones, supporting Sustainable Cities and Communities (SDG 11) and Life on Land
(SDG 15).

Guidance for neuro-prosthetic design. Insights from analysis on future architectures built from the

ones in this thesis, may inform future prosthetic designs that encode spatial information, contributing to
Good Health and Well-being (SDG 3).

Part 1

Designing and Simulating the Reinforcement
Learning System

2 Foundations of Reinforcement Learning and Proximal Policy
Optimization
This section introduces key concepts from reinforcement learning (RL), including belief states and mem-

ory, and derives the Proximal Policy Optimization (PPO) algorithm from first principles. The resulting
formulation will be used as the loss function in our implementation (section 4)).

The content of this section is similar to the material originally presented in [19], with adaptations for this
thesis.

2.1 Markov Decision Process

A Markov Decision Process (MDP) provides a mathematical framework for sequential decision-making, where
an agent interacts with an environment over discrete time steps. At each time step ¢, the agent observes
a state sy, takes an action a;, and receives a reward r; as a consequence. Crucially, the next state sy;1
depends only on the current state s; and action a;, which is known as the Markov property. The Markov
property ensures that all relevant information about the past is contained in the present state. Formally, a
finite-horizon MDP is defined as M = {u,S, A, P,r, H}:

e The distribution over initial states p: S — [0, 1].

e The state space S. A state at time ¢ is denoted s; € S and represent the environment and agent
configuration.

e The action space A. The action at time ¢ is denoted a; € A.

e The dynamics model P : § x A — AS. The probability of transitioning to state s’ from state s via
action a is defined as P(s'|s,a).

e The reward function r : § X A — R. The reward at time ¢ is denoted as r; = r(s¢, a;), which an agent
receives for being in s; and taking action a;.

e The time horizon H € N describing the length of a trajectory; the number of time steps before termi-
nation.

For infinite-horizon MDPs we omit the time horizon H and use -y instead:

e The discount factor v € [0,1). Describes how much future rewards are valued relative to immediate
rewards.

2.1.1 Partially Observable MDPs

In many real-world scenarios, agents do not have full access to the state space S. Instead, they receive
partial observations s?°*, while certain aspects of the environment remain unobserved (s#"°**). This leads to
a Partially Observable Markov Decision Process (POMDP), where the Markov property no longer holds for

the observed state alone, meaning that all relevant information about the past is not contained in s¢%*.

To compensate for this, POMDP agents can maintain a belief state by, which incorporaes past observations
in memory (m;) to approximate the true environment state:

St = {S?bS,S?"”bS}, by = f(Sfbsamt—1)~

The belief representation allows agents to make more informed decisions despite partial observability.

We will return to this framework in where we define the elements of our specific problem setup.

2.2 Policy

A policy 7 defines the agent’s decision-making strategy as a probabilistic mapping from states to actions,
expressed as m: § — AA. At each timestep, the agent samples an action from the policy, denoted as a; ~
m(-|s¢). For simple problems with small, discrete state-action spaces, optimal policies (policies that maximize
future rewards) can often be derived using classical dynamic programming techniques such as policy iteration
[24]. However, in high-dimensional or partially observable environments, policies are typically represented as
parametric functions 7y, such as neural networks, with learnable parameters 6 that are iteratively optimized
to improve decision-making.

In POMDPs, policies must account for incomplete state information. Depending on the approach, the policy
can be conditioned solely on the observed portion of the state, a; ~ 7(:|s?®*), or it can integrate memory
from past observations, represented as a; ~ 7(-|s¢**,m;_1). A common method for incorporating memory
into the policy is through Long Short-Term Memory neurons, which enable the agent to retain and utilize
past information when making decisions.

2.2.1 Long Short Term Memory (LSTM)

LSTM neurons are specialized types of neurons capable of maintaining hidden states over time [8]. Unlike
standard feed-forward neurons, which process information in isolation, LSTM neurons can capture temporal
dependencies by selectively retaining or discarding information through gates: the input gate, forget gate,
and output gate. This ability to manage memory allows the agent to utilize information from previous
observations or actions to make more informed decisions.

Let L, be the size of the input layer before the LSTM layer and let L be the size of the LSTM layer. At
each timestep ¢, an LSTM neuron recieves three input vectors:

e The hidden state from the previous timestep, hi—1 € R, which stores short-term information.
e The cell state from the previous timestep, C;_; € RY, which acts as long-term memory.
e The current input, z; € Rf=.

From this information we can generate the forget gate f;, input gate i; and output gate o;. A temporary cell
state C} is also generated directly from this vector with the tanh activation function.

fr = (Wylhe—1;2) + by) € RE,

iy = o (Wi [hy—1; 4] + b;) € R,

oy = o (Wo [he—1; 4] + bo) € RE,

Cy = tanh (W, [hy—1; 2] + b.) € R”
The forget gate determines how much of the previous cell state C;_1 should be retained or discarded. A
value close to 1 preserves information, while a value close to 0 removes it.
The input gate (i;) regulates how much new information from the candidate cell state C; should be added.

The cell state is then updated as a weighted combination of past and new information:
Ci=fi®@Cr1 +i, @ Cy,

where © is element-wise multiplication. Finally, the output gate (o;) determines how much of the updated
memory should be passed forward. The new hidden state is computed as:

ht = oy © tanh(C}).

This hidden state h; serves two functions:

1. It is passed to the next timestep, preserving temporal information.

2. It propagates through the network, influencing decision-making at the current step.

In the context of neural policies, h; can often be interpreted as a belief state, encapsulating the agent’s
memory of past observations. This makes the policy dependent on the hidden state, such that actions are
sampled as:

ay ~ 7T9('|ht).

2.3 Defining the RL objective

In reinforcement learning, the objective is to maximize cumulative rewards over time. This is formally
captured by the value function, which quantifies the expected future rewards an agent can obtain when
starting from a given state s and following a policy 7p. In the finite-horizon setting (which we will adopt in
our derivations), the value function is defined as

H-1
V™ (s) =Ernp, lz rr|so = 31 . (1)

h=0

Here, 7 represents a trajectory (or episode) with length H consisting of a sequence of states, actions, and
rewards:

7 ={s0,a0,71,81,01,...}.

Each trajectory is generated by the policy my, which defines the probability distribution over actions given a
state, and the transition dynamics P(s¢11|st,a¢). The probability of a trajectory under policy g is:

H-1
po(r) = u(so) [[molar | s0)P(sera | se,a0),
t=0

where p(sg) is the initial state distribution. The notation 7 ~ py in [Equation 1| indicates that trajectories
are sampled according to this probability distribution, meaning that when taking expectations over 7, we are
integrating over all possible trajectories weighted by their likelihood under py.

The reinforcement learning objective is to find the policy-parameters 6 that maximize the expected cumulative
reward across all possible initial states states

J(0) = ESUNM[VM (s0)ls

where J is the objective function that we want to maximize. In other words, the goal is to optimize the
policy 7 so that the agent accumulates the highest possible rewards over time. This optimization forms the
foundation for policy-based reinforcement learning algorithms.

2.4 Policy Gradient Methods

With the objective of reinforcement learning in mind, we now turn our attention to deriving increasingly
effective reinforcement learning algorithms. Our goal is to build upon fundamental principles to arrive at the
method ultimately used for implementation — Proximal Policy Optimization.

We start by defining the return of a finite-horizon trajectory as

H-1
R(T) = Z Th.
h=0

The central objective of policy gradient methods is to maximize the expected return. This can be expressed
as optimizing the function

T

-1

T

J(0) = Esonna V7™ (50)] = Ernpr,y l T(Sh,ah)] = Erpo [R(7)] = / drpg(T)R(7).

>
Il

0

We can write the gradient of the objective function as

Vopo(T)

VoJ(6) = Vg / drpe(T)R(T) = | dT———=R(T)pe(7) = /dTVg log po(T)R(T)pe(T) = Ernp,[Vo log po(T)R(T)].

T Lo (T)
(2)
Because log(pg(7)) includes terms independent of 8, we simplify using the fact that only the policy terms
depend on 6. Specifically,

Vo logpe(T) = Vo log(u(so)ma(ao|so)P(s1|s0,a0)...) = Ve(log pu(so) + log mg(ag|so) + log P(s1|s0,a0) + -..),

and we remove the f-constant terms:

H-1

Vo log po(T Z Vo logm(an|sp).
h=0

Thus, inserting the expression into the gradient becomes

H—-1
Vo (0) = E.p, KZ Vo logﬂ'e(ah|5h)> R(T)

h=0

Recalling the definition of return R(7), we can write

H—-1 H—-1 H—-1 H—-1
V0T 0) = Erepy | 3" ologm(anlsn) zmt,at]_ SE.... [velogm ko) 3 s
h=0 t=0 h=0 t=0

We split the reward sum at ¢t = h:

H-1 h—1 H-1
r(s¢,a4) = g r(st,at) + r(s¢,at).
t=0 t=0 t=h
So the gradient becomes
H-1 h—1 H-1 H-1
VoJ(0 g E;np, | Volog mg(an|sh) g (8¢, at) g E;npy | Vologmg(an|sn) E r(se,ar)| - (4)
h=0 t=0 h=0 t=h

In the first term of we can take the inner sum out of the expectation and get

H-1

h—1
Z Es,.an~pe | Vologme(an|sn) Zr S¢, Qy]
h=0 t=0
H-1h-1
= Esy,.an~po [Vologma(an|sn)r(se, at)]
h=0 t=0
H-1h-1

I
2

sh~po []Eah~7re(-\8h) [VG log mo (an|sn)r(st, at)H
h
H—
= Espmpp [7(56:0)Eaymry(1s1) [Volog mo(an|sn)]] - (5)
h

Il
- o
70
- o

Il
<
o
Il
=

In the third line we used law of iterated expectations, and in the last line we used that r(s¢, a;) does not
depend on a;, when t < h, so it can be treated as a constant.

The inner expectation simplifies to:

Eq, ~mo(-sn) [Volog mg(anlsn)] = Z (an|sn)Velogmg(an|sn) = Vo Z’]Tg (anlsn) = Vol = 0.

Qap,

10

Since the term is zero, the entire sum in [Equation 5| vanishes. Thus, we can remove the left-hand sum from

and we are left with the expression:

H—-1 H-1
Vol (6) = Z E,p, |Vologmg(an|sh) Z (8¢, ay] . (6)
h=0 t=h

Using the law of iterated expectation, this can be further written as

VQJ(Q) = Z Esh,ahNPs

H-1
r~pe | Vologmg(an|sn) E 7(s¢,a¢)|sh, an | | -
t=h

The factor Vglogmg(ap|sy) is a constant under the inner conditional expectation on s, and ap. We move
this factor outside the inner expectation and get

H-1

H—1
VoJ(0) = Es,.an~po lV@ log 7o (an|sn)Ernp, lz r(st,at)|sh,ahH .
h=0 t=h

This expression can be simplified even further by introducing the Q-function. It is closely related to the value
function (Equation 1)) and describes the expected future reward given a current state-action pair (instead of
just state as the value function is). It is defined as

H-1
Qh(s,a) =FErnp, [Z r(sg,ar)|sp = s,ap = a] .
t=h
Recognizing this, we arrive at
H-1
Vo J (6 Z Es,.an~ps [Vologmo(an|sn)Qr° (sn,an)],
h=0
which is the same as
H-1
VoJ(0) = Ermp, [Z Vo log ma(an|sn)QF (sh,ah)] : (7)
h=0

We have derived a objective gradient that can be implemented into a policy gradient method as follows:

Okl = 0% 1 aVyJ(0)

0=0k

However, the variance in is high, so we should add a baseline to the expression.

2.5 PG with learned baseline

Generally speaking, gradient estimators with lower variances lead to more stable improvement when used for
gradient ascent. High variance can make the policy updates noisy and unstable, slowing or even preventing
learning from converging. We will use baselines to induce lower variance in our gradient.

First, we note that the expectation of Vg logmg(ap|sy) multiplied with a constant is zero:

EGNﬂ'e (als) [Ve log 7T9(‘) } - CEarvTrg (als) [VQ IOg o (a|s)]

v a
—ch; als) 7?2(9(')) —CV@Z’]T@ als) = ¢Vl = 0.

From this, we see that shifting Q7°(sy,an) from with a constant baseline to does not introduce
bias. Specifically, for any constant ¢, we have:

Eay, ~ro(an|sn) Vo log m(an|sn)(Qr° (sh,an) — ¢)] = Eay wmg(an)sn)[Vo log T(an|sn) @y’ (sn, an)]

11

This property allows us to introduce a more general, state-dependent baseline (b (s)) without affecting the
expected gradient. Using this, we further expand the gradient expectation:

H—1
VQJ(Q) = E.,.Nps Z Vo log Wg(ah\sh)QZQ (Sh, ah)
h=0
H-1
= ESh,vah,NPQ [Vg log g (ah|8h)Q29 (Sh, ah)]
h=0
H—-1
= D Esumps [Baynn(isn) [Vologma(anlsn)Q° (sn,y an)lsn]]
h=0
H-1
=Y Eapnps [Bapmn(isn) [Vologmo(an|sn)(QR° (sn,an) — br(sn))|sn]]
h=0
H-—1
= Ermpy | D Vologmo(an|sn) (@7’ (sn,an) — ba(sn)) (8)
h=0

In other words, we do not affect the bias of the gradient by adding a baseline term that only depend on the
current timestep. It can only change the variance.

We choose by, (s,) =V, (sp), and define the advantage as
A3 (80, an) = Qp° (sns an) = Vi (sn)-
The expected advantage in a state sy, is
Eaprro(1si) [AR° (8h:an)] = Eaynomy (1) @5 (shy an)] = Vi (sn) =0,

so using this centers the gradient around zero, leading to more stable learning.

Inserting the advantage into the gradient of the objective function becomes

H-1
VoJ(0) =E;p, lz Vo log mo(an|sn) A}’ (sh,ah)]) (9)

h=0

We now have a form of the gradient with reduced variance, and once again an iterative scheme would be:

Okl = 0% 1 aV,yJ(0)

0=0*

2.6 Trust Region Formulation

We now shift our focus to an alternative formulation that does not explicitly involve V4. Our goal is to
identify a simpler expression in terms of 6% that we can directly maximize at each iteration. Another benefit
of this is that we can combine multiple objectives into a loss function.

12

From the result obtained in the last section (Equation 9|) we derive

H—-1
V@J(@) = ETNpek lz V@ log7r9(ah|sh)A29k (sh,ah)]
o=0* h=0 o=0%
H-1
= Eahvsh’\/pgk [Vg 10g7r9(ah|sh)AZ"k (sh,ah)]
h=0 0=0%
H-1
= Eamppi [Banmmo(lsn) [Vologma(an]sn) A, (sn,an)]]
h=0 0=0k
H-1 -
= ESthek /dahﬁg(a}L|Sh)V9 logwa(ah|sh)AZ"k (sh,ah)}
h=0 - o=0%
H-1 -
Vomg(anl|s ok
= Y B | [danmatanlon) T 470 5,01
h=0 . mo(an|sn) 0=0k
H—1 -
= ESthek /dahVQWQ(ah|sh)A29k (sh,ah)]
h=0 - o=0%
H—-1
= V(y Z Esh,Nng |:/ dahﬂg(ah\sh)AZQk (sh,ah)]
h=0 o=0*
H-—1
=Vy EShNPQk [Eah,"’ﬂ'e("sh,) [Ahek (8h7 ah)“
h=0 o=6%
H—-1
= v0]Esl,-..,SH_1~p9k lz Eah~7re(~\8h) [Ahgk (Shv ah)]]
h=0 o=0%
Summarizing the above derivation we have:
H-1
V9J(9) = vGESl,---#H—l’\’ng Z EahNﬂ'e('|Sh) [AhSk (sh’ ah)]] .
6=0% h—0 0—0k

From this we define a surrogate, first-order objective function

H-—1
Z EahN‘fre('\Sh) [Azak (S’“ahﬂ] ,

h=0

J(e) =]ESl,‘..,sH,INka

which has the property that

=VJ(6)
0=0F

Vo (0)

0=0k
Hence, if we only want local first-order improvements around 6%, we can replace J(6) by J (9) for the purpose
of choosing a local ascent direction.

In other words, we aim to maximize .J () under the current policy mgr while ensuring that the update 0
remains sufficiently close to % for the first-order approximation to remain valid. This leads to the iterative

update rule:
H—1

9F+ — arg max Es,.. s 1, lz By oo on) [A™ (50, an)] | (10)
h=0

where 0*t1 is relatively close to 6*.

2.7 Importance sampling

The method above requires sampling advantages from a distribution m4(+|s;,) where 8 is an unknown parame-
ter. We have to rewrite the expression in a way so that we can sample from #* instead. The inner expectation

13

of the advantage is an expectation over the unknown policy my. In order to sample from a known distribution
we use a principle called importance sampling:

Bavry (@] = [mo@A(0)da = [700 24D @) = B, |24 a0

a a Tk (a) ¢ Tk (a)
Using this on the result from we get

H—-1
Kl _ 3 mo(anlsn) .
0 argmé"XEso,m,SH71~pwek lh_o EahNﬂgk('lSh) [ng (ah|3h>A % (sp,an)|| -

The two expectations are drawn with respect to the same policy, and the inner expectation is conditioned on
the outer expectation. We can use the law of total expectation to rewrite the iterative scheme into

H-1
kbl o (an|sn)
0 = arg mgLXETNpek lzg) mAﬂek (sn,an)| ,

which we write as

H-1
B E,. k() Ao k(gy — Tolanlsn) 1
' R Lz_;)rh(e) 0 (Sh,ah)]7 () mor (anlsn) (1D

2.8 Proximal Policy Optimization (PPO)

From the expression above it is clear to see that if 8 and 6% differ much, the fraction of the policies can
become very large leading to unstable updates. In addition, as previously mentioned, for the first-order
approximation of the objective function J (9) to hold, the updates in # must remain small. Therefore, it is
necessary to find a way to constrain these updates so that the policies stay close to each other. In the clipped
PPO, this is achieved by clipping the ratio as follows:

l—e<r(0) <l+e.

Additionally, in the standard PPO literature formulation [25], the sum is incorporated into an expectation
over time, leading to the following optimization objective:

6" = arg m;szt [min{rf(0)A;*", clip(rf(0),1 —e,1+e)}A7*"].

Finally, instead of using an iterative approach, we reformulate this in terms of a single objective function.
This allows us to combine multiples objectives (loss functions) during the backpropagation process within a
neural network. We also use a hat over the advantage and expectation to indicate they are sampled versions:

JOUP () = By [min{ry(6) Av, clip(ry(0),1 — &,1+ 2)} A

Up to this point, the choice between a finite- or infinite-horizon formulation has not been crucial, since the
advantage estimation already incorporates the returns. However, moving forward, it becomes more important
to explicitly select the y-discounted returns appropriate for infinite-horizon settings.

2.9 General Advantage Estimator (GAE)

Let us start by introducing the Bellman equation for infinite-horizon MDPs which we will need for the
derivation of the GAE:

The infinite-horizon Q-function is defined as

o0

Qﬂ—s (57 a) = ETNpg [Z ’Vhr(siu ah)

h=0

80:S7a0:a‘| .

14

We can write a recursive definition by:

oo

So = 8,a09 = a] +Ep, [Z ’yhT(Sh,ah)

h=1
§1 = SI‘|‘|

Qﬂe (Sha ah) = T(Sha ah) + 7E8h+1~P(~|sh7ah) [ng (Sh+1)] . (12)

Q" (5.0) = By [(a0)

SOZS,GOZG]

= T(S’ a) + f)/]ET’\‘PG [Z Pyhilr(sha ah)
h=1

sos,aoa]

= T'(S, a) + ’YES’NP(~|s,a)

o0
Brrpo lz Y (Shats aner)

h=0
= 7‘(8, a) + ’YES’NP(~|s,a) [Vﬂs (8/)] .

Summarizing, the Bellman equation for an iterative process is defined as

Now, following literature on the General Advantage Estimator (GAE), [20], we define the one-step
temporal-difference (TD) error as

8 =17V (se1) = V(se),
where we have that

Bellman Equation
—N—
5f+1[6v] = Sf+1[rt + fYV(st-‘rl) 7V(st)] = Q(St; at) - V(St) = A(Staat)'

From the expectation of §;, we see that it serves as an y-unbiased estimator of the advantage. However, direct
use of 4} often results in high variance, making learning unstable. To mitigate this, the GAE introduces an
exponentially weighted aggregation of multiple TD errors, effectively balancing bias and variance.

We define Agk) as the discounted sum of TD errors. Because the TD errors contains V' (s;41) and V(s¢), the
discounted sum has a telescoping effect:

k—

(k) Zv 5t+z = —V(sy) + 1 + yree1 + - + Yrpiko1 + A V(St+k)- (14)

The GAE is then defined as:
AGAE = (1-)) (AE” FAAPD 4248 4)
(L=A) (5tV + /\(5‘/ 75t+1) +)‘2(5‘/ ’75t+1 + 7252{&-2) +..)

= (=N OV +A+X 4)+ A+ A2+ X+)
25X+2(A2+A3+A4+...)+...)

vi(_1 v A 25V N
=A== {00 (7) T (7) T 0 ()
Z’Y)‘ 0.
=0

This can be written iteratively as

ASE?E) = 62/ + ’y)‘AgrAl (v,A)?

which we solve for every update-step of our algorithm. Note that 6 requires a value estimation V(s), SO our
model needs to have an estimate for the value function of the current state. For deep reinforcement learning
this popularly achieved using an actor-critic style neural network. Implementation of this architecture will
be discussed further in subsection 3.4.

While GAE introduces bias to the exponential weighting, it significantly reduces variance by smoothing
noisy advantage estimates. This tradeoff is controlled by the parameter A\, where lower A values increase

15

bias but reduce variance, and higher A values decrease bias, but at the cost of higher variance. In deep
reinforcement learning, this balance is crucial for stable training, and A is often tuned empirically.

Using the GAE as the advantage function in PPO, we get the following objective function:
JCLIP () = i, [min{n(e)Agg}i), clip(r(8),1 —,1 + s)}Ag‘gﬁE)} . (13)

In Section [4] we will describe in detail how this objective function is implemented and used to iteratively
update the neural network during training.

16

3 Grid Cells and Continuous Attractor Networks

This section introduces the biological and theoretical foundations of grid cells and describes how their dynam-
ics can be modeled through continuous attractor networks (CANs). We begin by reviewing key properties of
grid cells, then outline how these spatial codes can emerge from recurrent network dynamics, and derive a
mathematical model for continuous attractor networks that is later implemented in our architecture.

3.1 Introduction to Grid Cells

Grid cells, discovered in 2005 by the Moser group, reside in the medial entorhinal cortex (MEC) and fire in
multiple locations in a gid pattern [27]. Each grd cell has a charachteristic spacing and orientation to its
firing grid and neighbouring grid cells often share spacing but offset their grids (different ”phases”). This
effectively provides a coordinate system for space. Grid cells are active across environments, suggesting they
privide a universal metric. Crucially, grid cells respond to the movement of the animal even in the absence
of landmarks — they are believed to arise from an internal path integration process. In the brain, path
integration is supported by head direction cells and speed cells which likely provide the velocity input to the
grid cell network.

Place cells, discivered by O’Keefe in 1971, are hippocampal neurons that fire when an animal is in a specific
location in an environment [28]. Different place cells have different preffered locations (place fields), and
collectively they form an internal map of the current environment. Place cells are influenced by external
sensory cues (landmarks, odors, etc) and can remap when the environment changes contect (source). They
are though to be critical for spatial memory and for associating memories with locations (episodic memory).

The hippocampus and entorhinal cortex are heavily interconnected. A prevalent theory is that place cells
may derive some of their spacial tuning from grid cell inputs [29]. Grid cells in layer II of MEC project
to the hippocampus, possibly providing a metric input to help update which place cells should be active as
the animal moves. In this view, grid cells offer a rough coordinate, while place cells tie that coordinate to
specific environmental feaures or contexts. Alternatively, one can think of place cells as reading a combination
of multiple grid cell firing patterns — indeed, mathematically a set of grid fields with different phases can
uniquely code a location (like a basis representation). On the other hand, place cells can influence grid cells by
providing periodic sensory corrections: when the animal encounters a familiar landmark, hippocampal place
cell activity can realign or reset the grid cell network to prevent accumulated drift. In rodents, disrupting MEC
grid cells inpairs path integration ability, while hippocampal lesions impair place memory — highlighting that
both are needed for robust navigation and memory.

The motivation for creating a neural network architecture inspired by this dance between place cells and grid
cells are many. Firstly, biological similarity between the neural architectures is a condition for comparing
neural recording from biological and artificial agents. Secondly, grid-like representations (specifically in
continous attractor networks) have been demonstrated to enable more efficient and higher capacity encoding
of spatial variables, compared to non-grid coding. [30]. Thirdly, it has also been shown that grid code allows
for high capacity learning in general [31]. We aim to see if the implementation of grid cells can allow for
better encoding of space, but in addition if the grid cells choose to encode information about an abstract
space not related to the spatial position of the agent. The ”place cells”, and all other general memory will
be modeled through LSTM neurons, while we will model the grid cells with continuous attractor networks.

3.2 Continuous Attractor Networks

For intuition, one can image that grid cells are arranged on a two-dimensional sheet, where each neuron is
connected to others via synaptic weights. Neurons close to each other are excitatory coupled, while distant
ones are inhibited. This connectivity pattern causes neighboring neurons to co-activate, while suppressing
activity elsewhere — producing a localized ”activity hump”. We model each neuron as a node whose activation
value contributes to this bump, and whose dynamics follows a differential equation that governs how the bump
moves.

Continuous attractor networks (CANs) are a class of recurrent neural networks in which the stable states lie
on a continuous manifold. In the case of grid cells, each stable state corresponds to the position of the activity

17

u(xz,t)

O

Energy

@

State Space

@)
I T 7 | w\ I w'

Figure 1: Intuitive 1D visualization of energy landscape of the continuous attractor network states. Any
state that is not a stable bump (red) will relax into a lower-energy configuration (blue). Once formed, the
bump can move smoothly accross the sheet along energy valleys.

bump on a neural sheet. Because this bump can shift smoothly across the sheet without changing shape
or amplitude, the network effectively encodes a continuum of positions—making it well-suited for spatial
representation. illustrates this concept in a 1D setting.

In the following subsections, we derive the governing equations of a CAN from first principles and show how
this formalism can be implemented to model grid-cell-like dynamics.

3.3 RC Circuit Model of Neuron

The RC circuit is one of the simplest models for capturing the electrical dynamics of a neuron. It expresses
how the membrane potential — the voltage difference between the intracellular and extracellular space —
evolves in response to external inputs, using a first-order differential equation.

P Intracellular

Rp .

c

v

T

J) Extracellular

Figure 2: The RC circuit modelling the potenital difference between intracellular and extracellular space.

Both the intracellular and extracellular fluids contain freely moving ions and can be approximated as perfect
conductors — i.e wires in the circuit analogy. The schematic in represents only the membrane; the
rest of the cell is abstracted away. The simplification is sufficient to model how the membrane integrates
incoming signals and generates spikes.

The lipid bilayer membrane itself acts as an insulator, but excess charge accumulates on both sides, allowing

18

it to be modeled as a capacitor C. A capacitor stores charge and builds up potential over time in response to
current. However, the membrane is not a perfect insulator: it contains ion channels that allow specific ions
to leak through, creating a passive current. This leakage is modeled as a resistor Ry, = 1/G, where G, is
the membrane conductance.

The ionic composition on either side of the membrane is asymmetrical: potassium (K7T) is concentrated
inside the cell, and sodium (Na™) outside. This imbalance is actively maintained by the sodium-potassium
pumps. Since the membrane is more permeable to K than to Na™, potassium tends to diffuse outwards
more frequently, making the extracellular side more positive. The resulting voltage gradient stabilizes at the
leak reversal potential Ej, =~ —70mV . In the circuit model, this resting potential is represented by a battery
in series with a resistor.

The capacitive current is defined as

I(t) = C=,
(t)=C—

where C' is the membrane capacitance, which is a measurable physical constant for neurons.

The resistive current is given by Ohm'’s law as

where R is the membrane resistance and Ep, is the leak reversal potential.

Applying Kirchoff’s current law to the membrane, we equate the total current to the external input current
Ie:vt (t)

IC(t) + IR(t) = ezt(t)a
which gives
av n V) - EL
dt R
Multiplying by R, we define the external driving voltage V.t (t) = Rlcy:(t), and note that the product RC
has units of time. Letting 7 = RC', we obtain the canonical RC circuit equation for the membrane potential:

C

= Ie:vt-

dv
TE = _V + Vewt(t) — EL. (14.)
This differential equation describes how the membrane voltage integrates incoming current over time, with
exponential decay towards the driving potential and time constant 7.

In simplified models, a neuron is said to fire when the membrane potential reaches a threshold, typically
around Vipresn, = —50mV. This depolarization is driven by the rapid opening of voltage-fated sodium chan-
nels, which briefly makes the membrane potential positive. Subsequently, voltage-gated potassium channels
open, repolarising — and often hyperpolarising — the membrane. This sequence is captured by the Leaky
Integrate-and-Fire (LIF) model.

In the LIF model, the neuron integrates incoming current until V'(¢) crosses the threshold. At that point, a
spike is registered, and the potential is reset to a lower value, such as V,..sct = —75mV, in the next timestep.
The membrane then resumes integrating input from the reset value.

Using a typical membrane time constant 7 = 10ms, illustrates how the LIF neuron responds to
various external stimuli.

Importantly, when the input current is sustained and sufficiently strong, the neuron fires repeatedly. This
results in a firing rate that scales approximately with input amplitude—a key property exploited in many
rate-based neuron models, which we will examine in more detail in the next subsection.

19

Voltage Reaction to Injected Current

—_ _50 g
-
g
> ‘60 4 ALAR LA R it
an
=S
; =701 | | | | | | | | |
0 100 200 300 400 500 600 700 800
Time (ms)
% 201
=
1S
SR : ! ; . ! : : ; :
0 100 200 300 400 500 600 700 800
Time (ms)

Figure 3: Voltage response of an RC circuit neuron to different input current profiles. Firing occurs when the
membrane potential crosses threshold. The spike rate increases with input magnitude, reflecting proportional
current-to-rate encoding.

3.4 Firing Rate Model

The leak reversal potential E, shifts the baseline voltage but does not affect the firing rate itself. To simplify
the analysis, we therefore set E;, = 0 and focus on the dynamics that determine firing frequency. With this

assumption, the RC circuit equation from becomes

dV
TE =-V+ Vvea:t@)y ‘/;zt(t) = ewt(t)RL-
We now consider a constant positive input current (Veyt(t) = Vegt), as in the interval from ¢ = 350ms to

t = 500ms in

The solution to the differential equation in this regime is
V(t) = Vet + (V(0) = Vegr)e™ .

To analyse the dynamics between spikes, we assume V(0) = V,.c5e+ = 0. This simplifies the expression further
and makes it easier to isolate the core relationship between input current and firing rate. These assumptions
do not affect the general conclusions but help avoid clutter from constant offsets in the derivations.

We then obtain the membrane potential as a function of time:
_t
V(t)=Veu(l —e™ 7).

To cumpute the firing rate, we determine the time T it takes for the membrane potential to reach the
threshold Vipresh: .
Vihresh = Vext(l - 67?)-

We can solve this equation for T' to obtain

V:a:vt)
T=mTln|{——7F"7-—.
(‘/ext - ‘/thresh

The firing rate as a function of the external potential is then given by

1 1
T(I) - T(I) - Tln(Vs)a Vezt > Vvthresh- (15)

Vewt—Vinresh

To better understand this expression, we consider the case where the input is much larger than the threshold
(Vewt >> Vinresn). The fraction within the logarithm can be rewritten as

V;—:zt _ 1
‘/ext - V;Shresh 1-—- ‘/thresh/‘/ewt,

20

where we have that Vipresn/Vert is very small. Using the Taylor expansion

it
1—=x
for small x we get . .
1-— ‘/thresh/‘/emt =1 + t"/z::h '

Applying the expansion In(1 + z) ~ x for small z, the firing period becomes

V;thresh) ~ T V;thresh
Veact ‘/ext

T(Vig) = 71n (1 +

Thus, the firing rate simplifies to
V:sxt

TV;&hresh ’

revealing the nearly linear relationship between input current and firing rate for strong inputs. This propor-
tionality underpins the use of LIF neurons in many rate-based network models.

If we plot the firing rate expression from using a threshold Vip,esn = 20mV, we obtain the curve
shown in

7’(Vvezt) =

Firing Rate as a Function of Vext

— HVex)
0.21 Vthresh
N
g
;5 0.1
by
0.0+

100

b
=
e
b2
=
S
3
=]
S

Vext (mV)

Figure 4: Firing rate of a postsynaptic neuron as a function of injected current. The relationship becomes
approximately linear for sufficiently large inputs. This behaviour motivates the use of ReLLU as a biologically

inspired activation function.

As the plot reveals, the neuron does not fire when V.;¢ < Vipresh, and begins firing at an approximately
linear rate once Vet > Vipresh. This nonlinear, thresholded behaviour is qualitatively similar to the ReLLU
(Rectified Linear Unit) activation function commonly used in artificial neural networks. The ReLU is defined

as ReLU(z) = max(0, x).

Thus, we see that the firing rate of a leaky integrate-and-fire neuron increases roughly linearly with the
strength of external input — provided the input exceeds threshold. This observation justifies the use of the
ReLU as a simple model of neuronal activation in the rate-based neural networks.

3.4.1 Neural Network Model

Suppose we consider a simple system with two neurons, where neuron v sends signals to neuron u through
a synapse with weight w. The synaptic current into neuron u can be approximated by the product of the

presynaptic firing rate and the synaptic weight:
Ioyn(t) = wo(t).
The firing rate of the postsynaptic neuron is then modeled as

w= Fllyn) = Flwv],

21

where F' is the neuronal activation function. As shown in the previous section F' can be approximated by the
ReLU function. While the firing rates u and v are non-negative, the synaptic weight w can be either positive
(excitatory) or negative (inhibitory). The simple system is illustrated in

Figure 5: Illustration of the relationship between biological neurons and a firing-rate model.

To account for spatial integration from multiple presynaptic neurons, the firing rate of a single neuron is

generalized to
u=F Z wbvb] .
b

For a population of neurons we therefore have
u = F[W4d],

where W is the weight matrix, v’ are the presynaptic firing rates and « are the postsynaptic firing rates. This
represents the steady-state firing rate of the system — the output when the inputs has been constant for
some time: di/dt = 0. To model the temporal evolution of activity, we introduce the dynamics described in
the RC circuit model of neurons: .

Tdit‘ = —i+ F[W.
To endow the neurons with memory, we introduce recurrent connections by adding input from @ to itself via
a matrix M. We also allow for a constant external drive i, representing inputs from other systems. This

leads to the core dynamical equation:

du

7o =~ + FIWT + M+ i (16)

The input vector ¥ can, in principle, represent any signal and be of arbitrary dimensionality. In this thesis,
we focus on the specific case where 7 € R? represents a two-dimensional velocity vector. The matrix W then
acts as a mapping from velocity to a velocity-dependent activation pattern — or velocity-spike field — over
the grid cell population. We denote this transformation as h = W#. The differential equation
now describes how the grid cells integrate this velocity signal h over time, effectively implementing path
integration.

In the next couple of sections, we will define and derive suitable forms for the vectors and the matrices in
the framework to obtain a well-behaved continuous attractor network. Specifically, we will treat @ as the
activity of grid cells, construct the recurrent weight matrix M that supports stable integration, define a
velocity-to-activation mapping W, and specify the role of external input Tt Together these components
will form the foundation for our continuous attractor model that we will later implement.

3.5 Defining the neural grid u

The vector 4 represents neural activity over a two-dimensional sheet, often referred to as the neural grid,
where the population of activity lives and moves. This sheet must have periodic boundary conditions: when

22

the bump exits one edge, it must re-enter from another edge. This ensures that movement across the sheet
can be continuous and unbounded, even though the domain is finite.

To replicate the characteristic hexagonal firing patterns observed in grid cells, the geometry and topology of
the neural grid must be chosen carefully. Specifically, the layout must support tiling patterns that preserve
symmetry and local structure under periodic translation.

We model the neural sheet as a two-dimensional shape that tessellates an abstract space — often correspond-
ing to physical position. There are at least three distinct ways to tile hexagonal firing fields into repeating
units of equal area. These tiling options are illustrated in

PN N NN / 7 7 7
- - - 1 - . - - - - - - / - // . // - /
/ / / /
A . P / /
N N N N / / / /
- - - I - - - - - - - / - , / - / - /
8 / / /
S N T N #
T - TN y 7 y 7
- - - - - - - - - - / - // - y / - /
“~ A A P / / /

Figure 6: Three ways (known to us) to tessellate hexagonal patterns into repeatable tiles.

Each tessellation tile can be thought of as a fundamental domain through which the activity bump moves.
As the bump crosses and edge, it reappears on the ”opposite” side of the same tile — effectively wrapping
around space. These wrapping rules define the boundary conditions of the domain, shown as colored edges

in the left column of

To visualize the topology, we imagine gluing the colored edges together, forming a closed surface. The
resulting topological object in all three cases is a twisted torus.

N
//
— —
~
~ -

o)

>l>
//H(fﬁ

Figure 7: All three tessellations fold into a topological torus, but differ in how their boundary conditions
align.

ya

For this thesis, we choose the rhombic tessellation, as it yields simpler and untwisted boundary conditions
when mapped to a torus. This makes it easier to define a regular index space for the grid-cell population,
and simplifies both the implementation and the derivation of translation-invariant dynamics.

We can now define a grid of neurons placed within the rhombic domain. These neurons are arranged in an
N x N lattice, where each neuron is indexed by integer coordinates i,,%, € {0,1,..., N — 1}.

23

Each neuron’s location in the physical (or "neuron”) space is determined by mapping its index to a continuous
position within the rhombus. We define the position vector of neuron ¢; as

~— N ” N 2 N

vector space

iz +0.5i, +0.75 V3 i, +0.5
Ci = (Cizaciy) =\~ 5 T N |-

index space

neuron space

Vector Space Index Space Neuron Space

B

Figure 8: Relation between vector space, index space and neuron space representation of a grid cell.

el

This mapping preserves the regular triangular lattice structure necessary for generating hexagonal firing
fields. It also respects the rhombus’s periodic boundary conditions. For example, moving horizontally from
¢(i, N — 1) wraps around to ¢(i,0) as visualized by the green arrow in the "Index Space”.

The population vector @ € RY * thus corresponds to a structured sheet of neurons, each with a well-defined
position in 2D space. This structure allows us to define spatial interactions — such as synaptic connectivity
— based geometric distance between neurons.

3.6 Direction preference and Velocity Field Wv

To use the CAN as a path integrator, the activity bump must translate across the neural sheet in response to
the animal’s movement. This means that the velocity of the animal — assumed to be represented by a vector
U = (vg,vy) — must influence the neural dynamics in a way that reliably shifts the bump in the direction of
motion.

A common modeling approach is to include a feedforward input that selectively excites neurons aligned with
the current velocity direction. This idea was first popularized by Fuhs and Touretzky [32], who proposed
that neurons could receive direction-specific inputs and project asymmetrically offset recurrent weights. The
effect is intuitive: when the animal moves northeast, neurons tuned to northeast directions become more
active and help push the bump in that direction on the neural sheet.

If the bump translates proportionally to the physical movement, each neuron’s activation will cycle on and
off as the bump enters and exits its location in neural space. Over time, this generates multiple firing fields
that tile physical space in a hexagonal pattern — mirroring the classic grid cell signature.

In the dynamic from the velocity input ¥ € R? is broadcast across the neural population using
a matrix W € RV 2X2, transforming the low-dimensional velocity into a high-dimensional velocity-modulated
drive:

h=wieRN,

To construct this mapping, we assign each neurons with a preferred direction ég, — a unit vector pointing
in some angle 6;. The contribution of the velocity input to neuron 4’s activation is then

where « is a scaling factor controlling the strength of the modulation. When ¢ aligns with a neuron’s
preferred direction, the dot product is maximized, and the neurons receives an enhanced excitatory input.
This localized overactivation helps ”pull” the activity bump in the corresponding direction.

24

Importantly, when there is no movement (¥ = 0), the dot product vanishes, and the velocity-induced bias
disappears. To maintain a bump amplitude in the absence of movement, a baseline input is typically added
to the external drive. visualizes the direction preferences we use for our simulation.

Figure 9: Each neuron is assigned a preferred direction. When the velocity input aligns with a neuron’s
preference, it receives stronger excitation and contributes to shifting the bump in that direction.

This mechanism provides a biologically plausible way to link velocity inputs to spatial transitions on the
attractor sheet — allowing the network to integrate movement over time and generate the hallmark periodic
grid pattern in physical space.

3.7 Distance on the Neural Sheet

To construct the recurrent weight matrix for a continuous attractor network, we need a consistent way to
measure the distance between neurons on the neural sheet. However, because the sheet is topologically a
twisted torus, distance is non-trivial.

3.7.1 Grid Norm

We define the distance between two neurons ¢; and c¢; using the following periodic metric:

llei = ¢jlleri = min fle; —¢j + sl

25

where s, € R? are shift vectors corresponding to wrapping around the torus in various directions. These
shifts reflect the symmetry underlying the triangular lattice:

So =

S3 ‘=

(

(o
00 5).

(

S5 =
S¢ ‘= (_1,0),
S7 = (170),
3
sg 1= —1.5,—{) 7

Sg = <15, f) 5

This definition ensures that we always select the shortest wrapped distance on the torus, preserving continuity
of the bump across periodic boundaries.

It’s worth noting that the same metric would apply under the other two tessellations (hexagonal and square
from , though in those cases the seven core shifts s; through s; is sufficient, and sg and
s9 become redundant. In we illustrate how one would find the minimum distance between two
neurons in the three different tessellations. We note that the shift vector used are not necessarily the same
in the different tessellations.

Figure 10: Comparison of coordinate systems and boundary wrapping across square, hexagonal, and rhombic
tessellations. The blue points highlight how equivalent neurons are located under periodic wrapping.

3.7.2 Asymmetry in Distance Function

To incorporate directional modulation, we define an asymmetric distance function:
dm‘(Ci,Cj) = ||Cz —Cj — leame',

where €y, is the preferred direction of neuron j, and [is a small displacement factor. This shifted distance
effectively shortens the distance from ¢; to ¢; when c; prefers movement in the direction of ¢;, biasing the

26

g7
;4
fy

Figure 11: The distance between two points is the shortest way from the shifted neuron (red) to the wrapped
versions of the other neurons (blue).

dynamics accordingly. In the distance between the blue and the red neurons have become shorter
due to a shift in the red neuron before calculating the distance.

This mechanism allows direction-tuned neurons to influence bump motion in their preferred direction more
strongly, which is essential for velocity-driven translation of the attractor.

This asymmetric distance function will be used to construct the recurrent weight matrix in the next section,
encoding both spatial proximity and directionality—key features for stable and responsive bump dynamics.

3.8 Determine the Recurrent Matrix M

A central challenge in designing continuous attractor networks (CANSs) is to ensure that the activity bump
is both stable—maintaining its shape over time—and mobile, allowing it to move smoothly in response to
velocity inputs. Achieving this balance requires careful tuning of the recurrent weight matrix M.

A classic design choice is the Mexican hat connectivity profile, where each neuron strongly excites nearby
neurons and inhibits those farther away. This results in local positive feedback that sustains the bump, while
inhibition at larger distances prevents the activity from spreading uncontrollably.

However, tuning M to support bump stability and accurate velocity integration is non-trivial. After testing
several configurations, we arrived at the following formulation:

i~y — lég ||
M;; = Aexp (”x ”;702 | >A. (17)

Here, A controls the amplitude of the kernel, o determines the spatial width, [is a shift in the preferred
direction and || - || is the wrapped grid distance as previously defined.

This formulation produces a purely negative kernel for all nonzero distances. As such, the recurrent matrix
on its own would not sustain a bump — activity would decay without an external drive. However, with the
addition of a constant positive external input, the network integrates that input to maintain a stable bump,
so we set Zext =1.

This setup has several practical benefits. i) Nearby neurons still receive relatively less inhibition than distant
ones, functionally mimicking the center-surround excitation-inhibition. ii) The purely negative recurrent
weights avoid runaway positive feedback loops, which can cause bump amplitudes to diverge. iii) Bump
magnitude becomes easier to stabilize and control.

In [Figure 12| panel (a) shows the inhibitory kernel profile, and panel (b) visualizes how this profile applies
across the 2D neuron sheet, producing localized activation surrounded by suppression. This carefully balanced
recurrent matrix is critical for maintaining smooth and biologically plausible bump dynamics in our CAN
model.

27

Figure 12: (a) Profile of the recurrent weight function across distance, showing local disinhibition surrounded
by stronger inhibition. (b) The effective excitation/inhibition profile distributed over the toroidal neural
sheet.

3.9 Stability Analysis of the Equation

The goal of this section is to analyze the behavior of our dynamical system under different hyperparameter
choices and understand the conditions under which the network maintains a stable and mobile activity bump.
In particular, we are interested in identifying regimes where the bump:

e Maintains its shape (structural integrity)
e Translates smoothly in response to velocity inputs.

To facilitate the analysis, we first simplify the system by removing the nonlinearity introduced by the acti-
vation function F(-). This is justified by focusing out attention on the support of the bump, define at time ¢
as

B, = {z : us > 0}.
Within the active region, the firing rate « is positive, meaning the activation function behaves linearly. Thus,
for neurons in the bump region, the system simplifies. At steady state (dy/dt = 0), and without velocity
input (¢ = 0), the dynamical equation reduces to

i = F(h+ M + ipa).
Since % > 0 inside By, we can drop the activation function for the neurons in that region and we get
@ =h+ M@+ e
This simplification generalizes to the moving bump case. For sufficiently small time steps At, the bump
shifts only slightly between time steps and the support B; changes minimally. Most neurons that were active

remains active, allowing us to ignore the nonlinearity in this region and treat the dynamics as approximately
linear.

Therefore, for the stability analysis that follows — focused on bump translation and maintenance — we
restrict our attention to the interior of the bump and omit the activation function F'() from the analysis.

Additionally, we assume [= 0 during the analysis, making the recurrent weight matrix M symmetric. This
simplifies the derivations without qualitatively affecting the dynamics.

3.9.1 Stability of Eigenvalues

Under the simplifications introduced earlier — linearization within the bump region and symmetric M —
the dynamics reduce to
di - o
TE = —ﬁ-f- h—|—Mﬁ—|—zezt

28

Because M is symmetric we can diagonalize as
Mo = DA,
where ® is an orthonormal matrix of eigenvectors and A is a diagonal matrix of eigenvalues.

Substituting this into the system, we rewrite the dynamics as

dii R
Tdit‘ — T+ ONDT T+ h+ 1oy

Multiplying both sides by ®7 transforms the system into the eigenbasis:

doTa
dt

T = —0T7+ TN T + he + i0,

where we define i_i@ = ®Th and ip = @Tfewt. Letting & = ®T'i, the dynamics become
dc - o
Td{ = —(I = NG+ ho +iy.

This equation is decoupled across eigenmodes. For each mode ¢, the solution is

" cr(0) + Mt e =1
C = 1-Xp
* ijiz)k + (Ck(o) - 7(hq’+1¢)"') em T M #1

11—k
The solution reveals several important stability properties:

e Unstable modes: If any eigenvalue A\; > 1, the corresponding mode grows exponentially with time,
leading to divergence of the bump. Such recurrent matrices are rejected.

e Stable integration: Eigenvalues \; = 1 yield approximately linear growth over time, which is
desirable for encoding continuous translation of the bump in response to velocity inputs.

e Damped modes: If Ay < 1, the mode decays to a steady state value:

(ho +ia)k

e(o0) = 3,

These modes respond to sustained inputs, but do not integrated over time.

When velocity is zero (ﬁ = 0), we still require a steady state bump. This is achieved when tewt > 0 and
eigenvalues as A\ < 1.

Importantly, it turns out that six eigenvectors dominate the dynamics responsible for translating the bump
across the sheet. These modes correspond to low-frequency, spatially coherent shifts in activity — aligned
with the geometry of hexagonal grid tiling — and their eigenvalues are carefully tuned close to 1 when there’s
smooth movement without distortion.

3.9.2 Eigenmodes

To understand how activity bumps form and move within the recurrent network, we now analyze the eigen-
structure of the recurrent matrix M. In the previous section, we established that bump stability and mobility
depend on eigenvalues near one. Here, we explore the corresponding eigenvectors, which determine the spatial
structure and symmetries of bump dynamics.

Assume that the neural sheet is an N x N rhombic lattice wrapped onto a torus, imposing periodic boundary

conditions:

(igyiy) € {0,...,N —1}2.

29

The total number of neurons is P = N2, and we write the activity vector « as
@ = (ug,...,up_1) €RF.
With ¢ = 0 the recurrent weight between neuron x; and z; depends only on distance ||z; — ;|| (see
, and we can therefore write the elements of M as
Mij = w(&; —) ,
so for any 7 we have that

P-1 P-1

(Mﬁ)z = Z Mijuj = QU(I_"Z — .’fj)ll/j.
— i=o

<

To find the eigenvectors of M, we make an ansatz using the discrete fourier basis. We define the integer
wave-vector k = (kg, ky) with k., &k, € {0,..., N — 1} and the corresponding Fourier mode as

2mi P oo N ..
e N " T = (ig, ly).

o L
1/’;;(96)—\/?

These P functions are orthonormal and satisfy

(Mpp)(F) = Z w(T = §)g(Y) = Y(7) Zw(F)e_Q’” ETIN = B(R)gg ().

Yy

This is summarized by writing it as an eigenpair as
My = MNEk) Yy,
with eigenvalue obtained by a discrete 2-D Fourier transform of the kernel
- 27t 7
Ak) = Z w(F) e N KT

T

This proves that the discrete Fourier modes diagonalize M, and the eigenvalues are the discrete Fourier
transform of the weight kernel w.

Translation Modes:

The constant mode k = (0,0) has eigenvalue

because w(7) < 0 everywhere.

The largest eigenvectors (responsible for integration of velocity) correspond to the six smallest non-zero
wave-vectors, occurring for angles 0°,120° and 240°:

- 2 2
kn = ko (cos ?,sin?) , n=0,1,2.

They span a six-dimensional eigen-space, with a natural real-valued basis given by three cosine-sine pairs

dn(x) = cos(%”kn ~x) ,

Y (x) = sin(3F k- x), n=1,23.

30

The actual eigenvectors of M will generally be linear combinations of these basis functions:

u(Z) = Zai@(f) + Bivi(2).

i=1

Figure [13|shows both the individual modes ¢,, and v, (left) and a representative random linear combination
that forms a bump-like pattern (right).

Theoretical Canonical Fourier Modes Random Linear Combination of Modes

N S IVN

SHH x>

Figure 13: Theoretical fourier modes of the largest eigenvalue. On the left we see the simplest possible fourier
modes, while on the right we see a random linear combination of the basis fourier modes.

We hypothesize that the six eigenvectors on the right are conceptually similar to the eigenvectors associated
with the largest eigenvalues of the matrix M.

Visualizing Eigenpairs of M:

A=2.08 A=2.08 A=2.08 A=2.08 A=2.08 A=2.08
N/ oY £,
A 4 ‘ -
A=0.21 A=0.21 A=0.21 A=0.21 A=0.21 A=0.21
ey Rl e : - : y
nt% AN Y &5 &
) " ey /0 o O (Y» A% 7e
K) PLLR - A e Y 2 P
A=0.21 A=0.21 A=0.21 A=0.21 A=0.21 A=0.21
L A SN X XU
e & A QY
oA AN -/ A%
A=0.07 A=0.07 A=0.07 A=0.07
> 0N - SRR A T
A4S X4 p ':E:s%,'/ :I\Y‘% é‘!’- _gsv
i‘:ﬁ DA ORS /ﬁ!" iu’ .&éi‘
A=0.07 A=0.07 A=0.07 A=0.07
=ity ST
“ c;;i;’} RORLS
v)’. ‘. "
LY g
: A=0.04 A=0.04
ASRINYT TRNTRET Qe a Dy
oo 4@@% gy £
SRty .00 n“. 4 ﬁg@

Figure 14: Top 36 eigen-pairs of the recurrent matrix. The first six (top row) correspond to translational
modes.

Using a specific M matrix with carefully chosen parameters (discussed later), we can compute and visualize
the top 36 eigenpairs. Figure [14] confirms that:

e The six largest eigenvalues correspond to low-frequency Fourier modes, resembling the ”Random Linear
Combination of Modes” generated theoretically.

31

e These six eigenvalues are the only ones exceeding 1, making them responsible for stable translation of
the activity bump in response to velocity input.

e All remaining eigenvectors correspond to higher-frequency Fourier modes.

e Their eigenvalues satisfy A < 1, meaning their response to constant input saturates to a fixed value.
These modes shape the bump but to dot support persistent motion.

In summary, the six translation modes have eigenvalues slightly above one, enabling sustained integration of
velocity signals. All other modes dampen over time and contribute only to the bumps stable shape. Notably,
increasing the kernel width o affects these smaller eigenvalues, thereby controlling the bump-width.

Lastly, while introducing [> 0 breaks strict symmetry, it does not alter the eigenvectors for large N. It
only shifts eigenvalues downward by effectively centering the kernel asymmetrically. Thus, tuning [provides
another mechanism to keep the translation eigenvalues close to one—crucial for stable integration.

We now turn to the choice of model parameters, where the primary objective is to ensure stable and accurate
integration of velocity inputs.

3.10 Parameters

Choosing N. Burak and Fiete (2009) showed that finite networks introduce a "non-flat” energy landscape
for the bump position: some positions are easier to move between than others, leading to variable step sizes
and directional biases unless the network is sufficiently large [13]. This result imply that for stable and
accurate path integration, the network’s size N must be large enough to flatten the bump’s energy landscape
and minimize the position dependent distortions.

However, increasing N leads to quadratic growth in both memory and computation, since the neural activity
vector & € RN, This makes training computationally expensive and increasingly impractical for network sizes
around N & 100. In our implementation, we empirically found that maintaining accurate path integration
over long episodes (up to 40,000 timesteps) required at least N = 48. This size offered a good trade-off: it
ensured sufficiently smooth bump dynamics while keeping training time and memory usage within feasible
bounds.

In we show how increasing N improves integration quality, with larger networks producing cleaner
hexagonal firing patterns during a 40,000 timesteps random walks.

N=6 N =12 N =48

Figure 15: Firing patterns during random walk episodes for CANs with N = 6, 12, and 48. Higher N results
in cleaner hexagonal patterns.

Choosing paramters of M. The weight matrix M € RY XN g governed by three parameters: the
amplitude A, the offset length [and the kernel width 0. We fix A = 1 and explore how varying [and o

affects the largest eigenvalue A; of M, summarized in

We selected o = 200 and | = 6 because they produced a stable, smoothly translating bump with a reasonable
shape and amplitude when visualized. Notably, this parameter pair also aligns with the predictions from our
earlier stability analysis, striking a balance where the largest eigenvalue remains above 1 but not excessively
SO.

When o = 300, the bump failed to form entirely, while at ¢ = 10, the bump became so narrow that
neighboring neuron activations were highly discontinuous — disrupting smooth integration.

32

[\o | 10 50 100 200 300
24142 3146 822 2.08 0.93

1 | 24004 3128 817 207 092
3 | 22021 2086 7.80 1.97 0.88
6 | 195.07 2541 6.64 1.68 0.75
12 | 91.67 1195 312 0.79 0.35

Table 1: Largest eigenvalue A\; for each (I, o) pair.

Figure 16: Bumps on the neural sheet for ¢ = 10, 200, and 300.

Empirically, maintaining \,,., > 1 appears necessary to preserve the bump integrity under continuous
velocity inputs. Our chosen value of A\, = 1.68 offers a robust compromise between integration accuracy

and bump coherence.

Examples of the resulting bump profiles are shown in

Choosing At. The primary constraint when selecting the time-step At is to ensure numerical stability
of the forward Euler iteration scheme. The stability condition requires that all eigenvalues of the Jacobian

o =200

matrix J = % lie within the method’s stability region.

Given the system:

7/
J = — = —
du T
the eigenvalues of J are:
A—1
M =)

where \; are the eigenvalues of the recurrent weight matrix M.

Assuming the most negative eigenvalue of M is A, = —9.19 (which it is for the o = 200, [= 6 setting),

the most negative p; becomes:

1+ M],

-9.19-1 -10.19

Hmin =
T T
For forward Euler, the stability region requires
|1+ Atp;| < 1.
Applying this to the most negative u; gives
At < = 0.196.
|,umin|

To ensure stability and reduce numerical integration error, we conservatively choose At = 0.05.

33

o =300

Choosing « . The parameter « scales the magnitude of the velocity-modulated input to neurons, and this
determines the speed at which the activity bump translates across the neural sheet. To preserve the bump
integrity, especially under maximal velocity inputs, o must be kept relatively small to avoid destabilizing the
attractor. After trial and error, we set o = 0.1, i.e., 10% of the baseline external drive 7., = 1. This choice
allowed the bump to move reliably without deforming or excessive amplitude fluctuations.

Multiple CANs. We instantiate multiple CANs operating in parallel, each with distinct frequency param-
eters. These frequency parameters can be trainable or fixed, and follow a geometric series. This is discussed
further in fubsection 4.4] about the neural network architecture.

The main constrain on the number of CANs is memory. For each CAN with N = 48, the recurrent matrix
2 2

M € RN**N® requires storing 48* float values. On a standard Slurm job (see subsubsection 4.6.3) with 16

CPUs and 8GB memory, this limits us to three CANs per node due to memory usage.

To validate the full setup, we conducted a long simulation episode with random walk velocity input, which
was fed into all CANs. We tracked the firing activity of neuron (2,2) in each CAN and aggregated its
actionvation over positions in the environment. The resulting activity map was plotted as a spatial heatmap

(see |[Figure 17)).

Average Activation of One Grid Cell in Random Walks with Velocity Integrated by CANs

07 ~
Nn
o
0.6 ~
g
05 §
Q
g = 5 =
=} =] A=t 0.4 4
= E E ©
Z % z =
S 8 o}
a a a °3.9
> > > 15
0.2 2
=
Q
<
01 gp
>
«
0.0
0 20 40 60 80 0 20 40 60 80
X position X position X position

Figure 17: Accurate integration of velocity results in spherical circles in a hexagonal pattern.

The clear hexagonal structure in the firing fields confirms that each CAN reliably performs path integration.
This demonstrates the viability of using multiple CAN modules in parallel to support rich, grid-like spatial
encoding.

3.11 Implementation

Throughout our derivation, we used a low-dimensional velocity vector v € R? as input to the CAN. This
input is expanded into the full neural space by using a velocity field matrix W, effectively shifting the bump
in proportion to velocity. However, this is not the only feasible approach. An alternative would be to directly
connect a high-dimensional vector from a preceding layer into the CAN, using dense all-to-all connections
between the two layers as the new W. This would permit more complex and potentially richer dynamics, such
as context-dependent modulation of the bump. However, it also dramatically increases the computational
cost and memory usage, and is left for future exploration.

To make training efficient, we apply dimensionality reduction to both the input and the output of the CAN
module. The CAN itself is represented as a 48 x 48 grid, and we denote the size of the adjacent network
layer as L. Two architectural options are compared in

e In architecture (a), the full L-dimensional vector is connected densely to all N? = 482 neurons of the
CAN, resulting in 2L - 482 = 4608L trainable parameters.

e In architecture (b), the input is first compressed to a 2D velocity vector, and the output is projected
back to a small spatial window (e.g. 2 x 2), requiring onlu 2L - 22 = 8 parameters.

Reducing the dimensionality concentrate learning into fewer parameters, which ideally accelerate convergence
and simplifies optimization.

34

(a) High-dimensional (b) Low-dimensional

Figure 18: Comparison of architectures: (a) Full layer-to-grid connectivity; (b) Reduced input-output map-
ping via velocity encoding.

Figure 19: Preserving bump integrity under pixelation: as long as the bump is larger than the pixel grid,
information is preserved. The image addresses the problem of having too few pixels.

While architecture (a) allows for more nuanced interactions—such as neurons that bias bump movement in
response to environmental cues (e.g., detecting a predator)—the complexity and computational load make it
a topic for future work.

We argue that the bump’s translation, which is the core function of the CAN, can be equivalently achieved
using a low-dimensional velocity vector as input, instead of a full L-dimensional embedding. Since the bump’s
steady-state shape is radially symmetric due to the distance-based recurrent weights, and since this shape is
fully determined by the network parameters, the reduction does not lead to information loss—as long as the
bump spans more than one pixel.

This architecture allows us to move and read out from the bump efficiently and with lower computational
overhead.

Numerical Integration:
The neural dynamics are implemented using forward Euler integration. From the differential form:

Tfl—:z—v—FF(h—FMv)

we approximate using discrete updates:
t+1 ¢, At t t t
vt =0t + = [-0f + F(Wa' + MvY)].
T

Since the agent actions occur on a behavioral timescale (seconds), while neural dynamics evolve on a much
finer timescale (milliseconds), we perform multiple integration steps for each velocity input. In practice we
found that 50 Euler steps per velocity update offer a good balance between accuracy and efficiency.

3.12 Analytical Implementation for Computational Efficiency

While the previous sections derived and analyzed a full numerical implementation of a continuous attractor
network (CAN), our final simulations adopt an analytical approach. This decision is motivated primarily by
practical constraints—namely, memory usage, computational speed, and training duration.

As discussed, our model uses a learned velocity vector to drive the CAN bump dynamics. This simplification
reduces the number of trainable parameters and enables easier interpretability, allowing us to correlate

35

velocity estimates with internal representations. It also makes future work—where richer, high-dimensional
embeddings directly modulate bump movement—more tractable. As we will see in [subsection 7.5] finding
architectures that drive the bump with stable and meaningful velocity signals is a non-trivial challenge.
Starting with this setup provided a useful foundation for understanding the design space and identifying
promising directions for future work.

Given that we restrict the input to a velocity vector ©; € R?, bump translation can also be computed
analytically, avoiding the need to simulate recurrent network dynamics at every timestep. This analytical
formulation provides significant computational advantages while yielding behaviorally equivalent output to
the numerical CAN when tuned appropriately.

Implementation Details:

Instead of evolving a high-dimensional state ;, we maintain a low-dimensional bump center j; € R?, defined
on a rhombic domain with periodic boundaries. This unit is bounded by

(0,0), (1,0), <15\g§> (05‘?)

Hit2 o
o [+l
o [t

Figure 20: Movement of center of analytical bump with velocity in positive y-direction.

At each timestep, we update [i; using the learned velocity:

W41 = p¢t + vy mod rhombus.

Figure 21: Sampling of analytical bump passed into the LSTM layer.

This preserves periodicity and mimics the effect of translation in the neural sheet. illustrates how
the bump center moves with a constant velocity input in the positive y-direction.

36

We then generate a Gaussian bump centered at i; and sample it on an N x N grid, producing the final CAN
output. This sampled bump is passed into the downstream layers, as shown in

The bump’s shape and speed are tunable to match the dynamics of the numerical CAN, allowing for direct
comparisons. This analytical solution not only accelerates training, nut also dramatically reduces memory

usage, allowing for multiple CANs in parallel — supporting experiments with richer or more hierarchical
attractor structures.

37

4 Environment and Model Implementation

In this section, we implement the foraging task using the POMDP framework described in[subsubsection 2.1.1{
defining the observable states, action space, reward structure, and policy. We also present the loss function

based on Proximal Policy Optimization (PPO) as introduced in and formalized in [Equation 13

followed by the specific implementation of the algorithm for our model architecture.

This section builds on previous work presented in [19], and shares some similarities in structure and phrasing.

4.1 States (Environment)

The environment is a pseudo-randomly generated 2D grid world consisting of n x n tiles. Various objects
populate the grid, each occupying a single tile. The key entities in the environment include a single agent,
multiple predators, cows, water and other objects.

Entity Health Damage Comments

AGENT 10 varies (1-5) Damage dealt depends on equipped weapon (e.g., sword)
Cow 3 0 Passive; can be consumed for food; does not attack
ZOMBIE 5 2 Melee attacker; moves slowly; straightforward pursuit
SKELETON 3 2 Ranged attacker; fires arrows from up to 5 tiles away

Table 2: Health and damage stats for living entities in the environment.

The single agent has four parameters describing its well being:

e health h;: Starts at 10 and decreases permanently when damaged. However, the agent can acquire a
shield that would take damage instead of the agent itself.

e food f;: Starts at 10 and describes how hungry the agent is. It decreases linearly over time and must
be replenished by consuming cows.

e drink d;: Similar to food, but is restored by drinking water (which is an easier task, because the agent
does not need to kill the water.)

e cnergy e;: Starts at 10 and and decreases linearly. The energy is restored by sleeping, which can only
occur when e; < 5 and the sleep continuous until e; = 10.

There are two kinds of predators which both try to kill the agent. The zombie has 5 in health and deals 2
damage when adjecent to the agent. The skeleton has 3 in health and fire arrows from up to five tiles away,
dealing 2 damage with a 70% probability.

Water

Predator

Agent

Obstacle

. L
|
| Border
s;)bs
|

Enemy view

Food

O = O @&

Patch

Figure 22: Design of environment. The size of arena, and the rectangles are not consistent with implemen-
tation, but it serves as a visualization for the reader to comprehend the various objects.

38

Cows have 3 health and spawn in designated, connected regions called patches. These patches are fixed
features of the environment but are not directly observable by the agent. Once all cows in a patch are
consumed, it becomes temporarily depleted, requiring time before new cows reappear. To forage effectively,
the agent must learn to identify, leave, and revisit productive areas — a task that demands memory and
long-term planning.

The environment also features water tiles, which are more likely to form connected structures such as rivers
or lakes. Obstacles like stones and trees appear in clusters, forming forests or rocky areas. These can be
harvested and stored by the agent as resources, enabling the crafting of tools and equipment such as axes,
shields, and swords.

The full physical 2d grid state at time ¢, denoted as s¢, represents the entire environment and is encoded as
a vector of length n?. However, the agent does not have access to the full state; instead, it observes a local
window s¢P%, a rectangular region centered around the agent with dimensions no> x nzbs. In addition to
this partial observed state, the agent has access to its own inventory I; and physiology ¢;. The inventory is

stone, wood, iron, swords and so on, while the physeology is h¢, ft, dy, ;.

This partial observability necessitates the maintenance of a belief state b;, which represents the agent’s
internal estimate of the true state based on past observations.

A simplified model of the environment is illustrated in

4.2 Actions and dynamics

The set of actions A consists of 15 discrete actions a;, including the actions NOOP, LEFT, RIGHT, UP,
DOWN and DO. The first five actions are straightforward — for instance, UP moves the agent one tile
upward unless obstructed by an obstacle. However, the outcome of the DO action is context-dependent,
making the environment dynamics more complex.

For example, if the agent executes DO while next to a tree, it collects wood. This resource can later be used
to craft items, such as a wooden sword via the MAKE_WOOD_SWORD action (action 14). The wooden
sword, in turn, allows the agent to use DO defensively when in proximity to a predator, providing a means of
self-protection. Attempting an action whose pre-conditions are unmet (e.g crafting without materials) results
in a no-op.

Predators move to neighboring tiles, with their direction chosen uniformly when far from the agent, but heav-
ily biased toward the agent when the agent is within the view of the predator (”Enemy view” in .
As a result, the environment exhibits stochastic dynamics, meaning that even for a given agent state and
action, the outcome remains probabilistic due to the unpredictability of predator movements.

4.3 Reward

The agent’s reward is tied to its physiological state, represented by the vector ¢, = (h¢, fi,dy, e;), which
captures health, food, thirst and energy levels. At each timestep, food, thirst, and energy levels naturally
decline, requiring the agent to take proactive actions: drinking water replenishes thirst, consuming cows
restores food and sleeping recovers energy. Health decreases only through attacks from predators.

The reward function encourages the agent to maintain homeostasis by assigning positive value to balanced
internal states and penalizing neglect. Specifically, the reward at time ¢ is

ry = 0.1 x (1 + sign(hy — 5) + sign(f; — 5) + sign(d; — 5) + sign(e; — 5))

This formulation grants increasing rewards as each parameter remains above a critical midpoint (value 5),
and it imposes strong negative feedback if any parameter falls below threshold. If any of the physiological
variables reach zero, the agent dies, ending the episode and triggering a large negative terminal reward.

This reward shaping ensures that the agent must first learn to satisfy its basic survival needs before progressing
to higher-level behaviors like evading or defeating predators.

39

4.4 Policy Architecture
General Setup Without the CANs:

The policy is implemented as a recurrent neural network designed to emulate core components of biological
decision making, as illustrated in The input to the network is a flattened version of the observed
obs

state s¢”°, which is first passed through a fully connected layer of width L, followed by an LSTM layer also
of width L.

At each timestep t, the LSTM receives the input vector x;, along with the previous hidden state h;_; and
cell state C;_1, and outputs the updated hidden state h;. This hidden state serves as the input to the actor
network, which consists of two fully connected layers of width L, culminating in a softmax output layer that
defines a categorical policy over 15 discrete states.

The softmax operation is defined as:

e~

2;5:1 €%

softmax(z); = fori=1,...,15.

Continuous Attractor Networks

Input LSTM (Actor Network

ath,)

Critic Network

v(h)

Auxiliary Network

(&0 37)

Crphiy

Figure 23: The architecture of the neural network. The actor head is used to determine policy, the critic
head is used to estimate the GAE, and the auxiliary head is used for path-integrating agents. Green lines
are fixed, grey lines are trainable, and red and orange lines are optional.

The policy is a function of the observed state, the memory, the hidden state and the recurrent state (if using
the CANs): a; ~ mp(+|s9%,Cy_1, ht_1,74_1). Alternatively it can be written as a function of the LSTM layer
output as a; ~ my(-|h:). Here h; functions as the belief state b, for POMDPs described in [subsubsection 2.1.1]

The neural network architecture includes a critic network, which has the same structure as the actor network,
consisting of two hidden layers. However, its output layer consists of a single neuron that estimates the value
function V(h;). This prediction is used in the calculation of the GAE in [subsection 2.9| which is used in the

PPO.

40

Additionally, we incorporate an auxiliary prediction network with an identical architecture to the critic
network. This network predicts the agent’s current position (z,y;). Whether this network is included
during training determines whether the agent employs path integration or not, distinguishing between a
path-integrating and a non-path-integrating agent.

Additionally, we support training a sparse network using magnitude-based pruning after 20,000 epochs. The
rationale is that weights with the smallest absolute values contribute minimally to the output and can be
removed, reducing overparameterization and improving efficiency.

Adding the CANs to the Architecture:

The architecture also optionally integrates a grid cell module, as described in the previous section. This
module receives velocity inputs and contributes recurrent state information r; to the LSTM. Velocity input
is computed in on of two ways, depending on the chosen architecture:

e Architecture 1 derives velocity from the previous action taken.
e Architecture 2 derives velocity from the LSTM’s internal memory.

The orange line in |[Figure 23| corresponds to Architecture 1, which involves two matrix transformations.
First, a fixed matrix maps the previous action a;—; to a unit velocity vector v € (£1,0), (0, £1) if the action
involves translation (a;—1 € 1,2, 3,4). Second, a trainable or predefined matrix transforms this unit velocity
into m distinct velocity vectors, one for each of the m CAN modules.

In biological systems, particularly in rodents, grid cell modules have been observed to scale geometrically.
Recordings in rats—and later in mice, bats, and humans—suggest that each module’s spatial scale is roughly
1.4 to 1.5 times larger than the previous one, with all cells within a module sharing the same scale. Stensola
et al. (2012) found a consistent scaling factor of 1.42 across modules [33], while Mathis et al. (2012)
demonstrated that a scaling factor around 1.5 optimizes spatial decoding accuracy [34]. We adopt a scaling
factor of 1.45, which falls within this biologically and functionally plausible range.

In the results section, we compare four variations of Architecture 1 based on different strategies for generating
velocity scales:

e Trainable scaling: Each CAN has an independently trainable weight that adjusts the magnitude of
its velocity input.

e Trainable ratio: Use the form fy-7* with constant f, small enough to ensure that the coarsest module
spans the entire arena, and trainable ratio 7.

e Trainable base: Use the same geometric form, but with constant » = 1.5 and trainable base frequency
Jo-

These configurations allow us to explore the impact of scale encoding mechanisms on the agent’s spatial
learning and representation.

The red line in represents architecture 2. It is a matrix with size R%2%X2™ <where m is the
number of CAN modules. We explore three training strategies for this architecture

e Unconstrained trainable matrix: A standard trainable weight matrix W, maps hidden states to
velocities. While flexible, this setup introduces many degrees of freedom, potentially leading to unstable
or noisy velocity dynamics that could interfere with the LSTM’s learning.

e Trainable matrix with tanh constraint: We apply a tanh activation after the weight matrix to
limit velocity magnitudes. This regularization encourages more controlled velocity fields that better
match plausible grid cell firing behavior.

e Fixed random matrix: Here, W, is initialized randomly and held constant during training. This
serves two purposes: (1) it reduces noise by eliminating trainable parameters at this stage, and (2)
it tests whether the LSTM can learn to produce meaningful velocity inputs through adaptation of its
internal memory alone. If the matrix has a small norm, this setup also naturally bounds the resulting
velocities.

41

We include the fixed-weight variant to investigate whether agents can develop stable spatial strategies even
when the transformation from memory to velocity is static and random.

In total, we consider three variations of Architecture 1 and three of Architecture 2. Each variation may
also be combined with other parameter adjustments, allowing us to systematically evaluate a wide space of
designs.

4.5 Loss functions

Both the critic and the auxiliary prediction network allow for immediate verification of their estimation
accuracy. The critic’s output can be assessed by comparing it to the mean return over parallel trajectories,
while the auxiliary prediction network’s output can be directly compared to the agent’s actual position. Since
these are supervised learning tasks, relying solely on PPO updates for the policy is insufficient. Instead,
additional loss functions must be introduced to incorporate these learning objectives.

4.5.1 Value loss

We define a standard mean squared error loss for the estimation of the value function as
LYF(0) = By [(V(s) = V()]

Here, the Vj(s) is the output of the neural network, while V(s) is the true discounted collected reward of a
rollout.

4.5.2 Entropy loss

We encourage exploration by adding a entropy loss term as well, which is common in literature and state-of-
the-art models [25]. The loss function is large when the policy is more deterministic.

L5(0) == mola| s) log(mg(a] s)).

The entropy of a policy measures how spread out (or unpredictable) its action distribution is. When the
policy assigns a high probability to only one or a few actions, its entropy is low. Maximizing the policy’s
entropy (or equivalently minimizing its negative) encourages the policy to maintain a more uniform, less
“peaked” distribution over possible actions, thereby promoting exploration. By not collapsing too quickly to
a single action, the policy remains stochastic, tries more varied actions, and is less likely to get stuck in a
suboptimal deterministic behavior pattern.

4.5.3 Auxiliary loss

In some cases we want to have explicit path integration as well, forcing the network to improve or maintain
its ability to predict its position. The auxiliary prediction is a simple MSE loss given by

LAVX(9) = B, [[[(F0, 50)(6) — (o 0)l13]

Here, (&, 9;) is the prediction of the x and y position of the agent via the neural network, while the (z,y) is
the target function with its actual position.
4.5.4 Total loss

We define LEFP () = —JCMP(9) from [Equation 13| as a policy loss. The total loss at each network update
is then defined as
L(#) = L°P(0) + o LVF (0) — s L5 (0) + as LAVX(6).

The total loss determines how much the network is be changed at each policy-update.

42

4.6 Implementation
4.6.1 Algorithm

We implement Proximal Policy Optimization (PPO) generally as described in [25], introducing the following
notation:

e M: the number of parallel environments (or “actors”),

e H: the number of timesteps collected from each environment during one iteration,
e K: the number of training epochs on the collected batch,

e G: the size of each minibatch,

e N: the total number of iterations.

At each iteration, we sample rollouts from all M environments, each running for H timesteps, thus creating
a total of M x H transitions. We then use these transitions to compute advantages via GAE, construct
minibatches, and optimize the surrogate objective over multiple epochs. After optimization, we replace ,1q
with the newly learned parameters. Algorithm [1| provides a concise overview.

Algorithm 1 PPO (Actor-Critic Style)
1: for iteration =1,2,..., N do
for actor =1,2,...,M do
L Run policy g, in environment for H timesteps

Compute advantage estimates 1211, AQ, RN A H
Optimize the surrogate loss L w.r.t. 8, using K epochs and minibatch size G < M H

901d «— 0

Although the pseudocode shows the environments being sampled sequentially, our actual implementation
with JAX runs the M environments in parallel. After computing the advantages, we collect each of the
M x H transitions (along with their advantages) into a single batch. During optimization, we split this batch
into randomly sampled minibatches across time steps and across different environments. For each minibatch,
we compute a gradient update on the policy parameters. We repeat this minibatch sampling and update
process for K epochs in total. This procedure of repeatedly splitting a dataset into random subsets is what
constitutes stochastic gradient descent (SGD).

Why SGD?

e Avoiding Sharp Local Minima: Using noisy, incomplete information from a small subset of the
data can help the optimizer avoid getting trapped in sharp local minima.

e Implicit Regularization: The noise in the gradient-estimates can sometimes act as a natural regu-
larizer [35], improving generalization so that the agent performs well even on unseen states.

e Scalability: For large datasets (or large-scale RL rollouts), it is impractical in terms of memory or
compute time to perform full-batch updates.

To update the neural network weights for each minibatch, we employ the Adam optimizer [36], which
combines momentum and adaptive learning rates to improve convergence speed and stability. Adam is
particularly well-suited for reinforcement learning tasks, as it efficiently handles noisy gradients and non-
stationary objectives.

4.6.2 Implementation in JAX

For simulation and training, we use the Google JAX Machine Learning Framework. J AXE| is a small Python
library that looks and feels like NumPy. You write the usual array formulas—addition, matrix products,
nonlinear activations—and two extra pieces of magic happen automatically:

Lhttps://github.com/google/jax

43

1. Automatic differentiation: given a numerical recipe for a quantity L(#), jax can also provide VyL—the
exact gradient we need to improve the parameters 6.

2. Ahead-of-time GPU code: the first time a function runs, jax records every array operation and trans-
lates the whole trace into one compact GPU program. Later calls reuse the same program, so the
expensive work is done on the GPU while Python simply waits.

Both features are invisible to the user yet crucial for high-throughput reinforcement learning.

A big difference between between coding regular neural networks (such as pyTorch) and JAX, is the impor-
tance of the shape of the tensors. All arrays in the project follow a single shape convention

shape = (T, B, F),

where T is the number of time steps in a rollout, B is the number of parallel environments, and F is the
feature dimension. Because jax treats the first axis as a batch, one call can crunch many time steps, many
environments, or both.

However, our recurrent modules — the LSTM and the CANs—use hidden states of shape (B, ; F'), without the
time dimension. These represent the current state and are updated recurrently. JAX slices the appropriate
time step internally during recurrent processing. By wrapping the cell in flax.linen.scan, the LSTM is
unrolled across the T axis ahead of time, resulting in a fused GPU kernel for the full sequence—greatly
improving performance over naive looping.

One call = one PPO update. A compiled train_step() performs
1. interaction with the simulator for T steps,
2. computation of advantage estimates, and
3. several mini-batch gradient updates.
All intermediate tensors stay in GPU memory, so there is no data traffic between device and host.

The loss of actor, critic and an auxiliary task lives inside one function. Using jax.value_and_grad returns
the scalar loss and its gradient in a single pass. Parameters are then updated with an Adam optimiser from
the optax library. Because everything is an immutable array (a pytree in jax jargon), saving checkpoints or
replicating weights across devices is trivial.

4.6.3 FAS Research Computing Clusters

All large-scale experiments were executed on Harvard’s Cannon high-performance computing environment,
managed by the Faculty of Arts and Sciences Research Computing (FASRC) group. Jobs are scheduled with
Slurm. Users connect via ssh to a lightweight login node to submit jobs on the available partitions. In
Slurm terminology a partition is a queue that bundles a compatible set of compute nodes together with a
policy envelope (wall-time limit, memory ceilings, GPU availability, etc.)

Each node offers one NVIDIAH100 GPU, 16 physical CPU cores and 128GB system memory where this
amount of memory is required for logging the CAN states. One node therefore offers exactly what our PPO
agent needs: a single large GPU and moderate CPU throughput. The partition allows up to 72 hours of
wall-clock time, enough for an agent to learn advanced tasks (in 12 and 24 hours runs the agent would not
even learn ”"simple” tasks as to kill a cow).

Listing 1: Slurm submission script for a single-node.
#1/bin/bash
#SBATCH —array=0—1
#SBATCH —job—name=gru_input_hidden_layer_512_N_48 num_can_3
#SBATCH —partition=kempner_h100
#SBATCH —nodes=1
#SBATCH —ntasks —per—node=1
#SBATCH —cpus—per—task=16

44

#SBATCH —gpus—per—node=1

#SBATCH —time=72:00:00

#SBATCH —mem—per—cpu=8G

#SBATCH —output=./output/foraging_grid_test.out
#SBATCH —error=./output/foraging_grid_test.err
#SBATCH —mail—type=FEND

#SBATCH —mail—user=feliz_berg@hms . harvard. edu
module load miniconda/4.12.0—fasrc01l cuda/12.3
conda activate rl—jax

export XLA PYTHON_CLIENT PREALLOCATE=false

srun python train.py —config configs/ppo.yaml

When the job reaches the top of the queue, Slurm binds the GPU and CPU cores exclusively to the pro-
cess, launching the training script in an isolated cgroup with guaranteed resources. On this hardware the
configuration from Section delivers roughly 5.4 x 105 environment steps per second.

The combination of modern GPUs, generous memory, and predictable scheduling makes the kempner_ h100
partition an excellent fit for the multi-GPU jax experiments presented in this thesis.
4.6.4 Parameters

lists the primary hyperparameters and constants used during training. We chose a large number
of parallel environments (num_envs) to enhance stability in this complex task: with more environments, the
policy receives more diverse and less noisy updates, reducing variance in the training process.

Table 3: Hyperparameters and constants used for training.

Parameter Default Value | Description

num_envs 1024 Number of parallel environments
total_timesteps | 3 x 10° Total timesteps

num_env_steps 64 Rollout length (H) per environment
update_epochs 4 Number of update epochs per iteration
num_minibatches | 8 Number of minibatches per epoch
gamma 0.99 Discount factor

gae_lambda 0.8 GAE parameter

clip_eps 0.2 PPO clipping range

ent_coef 0.01 Entropy coefficient

vf_coef 0.5 Value function coefficient

aux_coef 0.1 Auxiliary (path integration) loss coefficient
max_grad_norm 1.0 Maximum gradient norm

layer_size 512 Size of hidden layers

grid_size 96 x 96 Size of the grid environment

obs_size 7x9 Observed state dimensions

adam_eps 1x107° Adam optimizer epsilon

adam_1r 2 x 1074 Adam optimizer learning rate

Several hyperparameters, including the learning rate (1r), rollout length (num_env_steps), update epochs
(update_epochs), and the number of minibatches (num minibatches), were tuned empirically and provided
stable performance in preliminary experiments. The discount factor (gamma), GAE parameter (gae_lambda),
clipping parameter (clip_eps), entropy coefficient (ent_coef), and value function coefficient (vf_coef) follow
common values found in PPO literature [25], [26]. By contrast, the auxiliary loss coefficient (aux_coef) is
unique to this work, balancing how strongly the path integration objective influences learning.

Finally, we set the hidden-layer size (layer_size) large enough to allow for robust representation learning,
including the creation of spatial maps. While larger sizes can improve capacity, in practice we balanced this
against the computational cost to maintain reasonable training times.

45

5 Experiments

In this section, we evaluate and compare the training performance of different agents by analyzing their
average returns. Recall that the return is defined as

| M oH-
E[Return] = i Z Z AP
m=0 h=0

where M is the number of episodes and H the episode length. In addition to return curves, we also examine
the learning dynamics—specifically, what behaviors or representations the agents acquire throughout training.

5.1 Early training

We begin our analysis by examining the learning process during the first 10,000 updates, where the agent
behaviors are still in their early development stages. Despite architectural differences, the general learning
chronology remains consistent across all models.

Initially, the agent exhibits very short lifespans, dying quickly due to its inability to satisfy basic physiological
needs or avoid predators. Even if it learns one behavior, such as eating, this does not significantly improve
returns unless it also learns to drink, sleep, and evade threats. Only once these basic survival skills are in place
do we observe a consistent increase in return, as the agent begins forming more advanced strategies—such
as navigating sparse maps for resources or avoiding danger while foraging.

As shown in sleeping is typically the first reward-boosting behavior to emerge. It provides a quick
reward with a single action and is therefore easily discoverable by PPO.

1000 Performance Surge After Behavioral Breakthrough in Early Training

Return
800

600

Return

400

200

L

2000 4000 6000 8000 10000
Epoch

Wake Up
Drink
Eat Cow

Percentage
N
(=)

Figure 24: Early training phase: rewards begin to rise as the agent learns to sleep, drink, and finally eat.

Drinking is the second skill acquired. Unlike sleeping, drinking requires the agent to be adjacent to water and
correctly execute the “DO” action (action 5). Since action 5 yields no intrinsic reward, this skill demands a
correlation between perceptual input and action selection.

Eating is learned much later. It requires the agent to find a moving cow, approach it, and execute three
successful “punches” (due to the cow’s 3 health). This task becomes more feasible after the agent learns
basic spatial tracking and coordination.

Importantly, eating and drinking often require the agent to navigate through enemy-populated areas, so
acquiring these skills implies at least partial predator avoidance.

Once the agent consistently eats, drinks, and sleeps across nearly all environments, it begins learning more
advanced behaviors, such as collecting resources and crafting weapons. This transition is illustrated in
where later milestones only emerge after the foundational ones are established.

46

Achievements Spike After Eat, Sleep, and Drink Satisfied

Collect Coal Collect Iron Collect Stone Collect Wood
100
g 20 N
g 1 50
5 2] 4_/1/" o ® __J"M
-
013 - T 01 - T 04 - . 0+, - .
0 5000 10000 0 5000 10000 0 5000 10000 0 5000 10000
Make Iron Pickaxe Make Stone Pickaxe Make Wooden Pickaxe Make Iron Sword
1] 40 4
&0 104
& 10 50 10
=
§ 204
o
I R ___/‘» g
0 0 0 0
0 5000 10000 0 5000 10000 0 5000 10000 0 5000 10000
Make Stone Sword Make Wooden Sword Defeat Zombie Defeat Skeleton
(%]
& 40 504
‘E 5 10
S 20 M| 25
o
~ JErT——— __—_./ﬁ”‘
04 0+ 0 0
0 5000 10000 0 5000 10000 0 5000 10000 0 5000 10000
Epoch Epoch Epoch Epoch

Figure 25: Progression of learned achievements over training epochs. Complex skills like “defeat zombie” or
“collect stone” emerge only after mastering basic survival behaviors.

5.2 Comparing architectures

We initially compare different architectural variants of the policy network to evaluate the impact of two
design choices:

e Adding auxiliary prediction heads for path integration (PI)
e Introducing sparsity in the network’s fully connected layers through magnitude-based pruning.

All other hyperparameters—such as learning rate, batch size, and discount factor—are kept constant across
runs. Fach agent is trained for over 80,000 epochs, with each epoch processing rollouts from all parallel
environments.

Training Performance of Base-Architectures Without CAN

20000
noPI dense
noPI sparse
=] Pl dense
g 150001 — m sparse
&
Q
=
Z 10000 1
tay
5]
en
g 5000
z
01— . : : :
0 20000 40000 60000 80000

Epoch

Figure 26: Training curves for four different architectures over more than 80,000 epochs.

presents the average episode return throughout training. The z-axis tracks the number of epochs,
while the y-axis reports the mean return per epoch across all environments.

The results show that agents equipped with auxiliary path integration (PI) heads outperform their non-PI
counterparts. One possible explanation is that encouraging the agent to maintain a sense of position helps

47

it associate resources with specific locations, enabling more efficient navigation and planning.

Introducing sparsity slightly impairs the performance of the non-PI agent, while the PI agent remains largely
unaffected. This suggests that pruning up to 90% of the weights can preserve competitive performance, offer-
ing a promising approach to reducing memory and computational costs without significantly compromising
learning efficacy.

Architectures with Grid Module:

We now exclude dense networks from consideration, as earlier results showed that sparse networks can achieve
comparable performance. Thus, Baseline PI refers to the sparse path-integrating agent, and Baseline noPI
refers to the sparse non-path-integrating agent.

Figures [Figure 27| and [Figure 28| show that adding CAN modules has little effect on overall performance.
Among the variants, the LSTM-CAN PI noTrain (orange line) appears to slightly outperform the Baseline
PI. Notably, this architecture has the fewest trainable parameters among the LSTM-input variants, which
could contribute to its stable performance.

In contrast, the LSTM-CAN PI noTanh (red line), which allows unconstrained velocity outputs and has many
trainable parameters, performs slightly worse than the baseline. This suggests that unregulated velocity
magnitudes may disrupt the grid module’s contribution.

A deeper analysis of how these velocities evolve and what information the CANs encode will be presented in
Part 2 of the thesis, where we explore the memory dynamics and spatial representations of these architectures.

20000 Training Performance of Velocity-Input CAN Architectures

vel noPl

— vel noPI trainable f
vel noPl trainable r

150001 —— vel noPI noTrain

vel Pl trainable £

vel P trainable r
vel PI noTrain

Average Episode Return

100001 — oipy
— Bascline PI
Bascline noPI
5000 1
0 20000 40000 60000 80000
Epoch

Figure 27: Performance of variations of architecture 1.

Training Performance of LSTM-Input CAN Architectures

20000
LSTM-CAN noPI noTanh

—— LSTM-CAN noPI
o LSTM-CAN PI noTrain
5 15000 — LSTM-CAN Pl noTanh
b —— LSTM-CAN PI
% — Baseline PI
g 10000 | Bascline noPI
iy
O
=0
g 5000
z

04— ; = " ;
0 20000 40000 60000 80000
Epoch

Figure 28: Performance of variations of architecture 2.

48

Traceplot and Agent Movement:

In [Figure 29| we show a trace plot from late-stage training of the sparse path-integrating agent. Events such
as eating, drinking, and predator sightings are highlighted along the trajectory. We observe that the agent
explores a large portion of the map, rather than remaining near a single patch with nearby water. This
indicates adaptive behavior: once local resources are depleted, the agent seeks out new patches and ponds
elsewhere. The red markers—indicating predator encounters—tend to form short lines, suggesting the agent

successfully escapes threats rather than getting trapped or killed.

Traceplot of Entire Episode

Y Position

Food Event
L] Drink Event

Predator in View &

0 A
0 20 40

X Position

Figure 29: Trace plot of the sparse path-integrating agent. Colored dots show food, water, and predator
encounters. Grey overlay is a five-step moving average to indicate trajectory smoothness.

First Third of Episode Middle Third of Episode Last Third of Episode
Movement r* . ‘Q. .
o Pt S . . .
e Food Event . | [
801 e Drink Event sof "-” - H ’ 80 ’- Pnd . .
By \ & R ¢ - ey
= 60 1 = 60 PR ol 2607; #
g 60 g 60)] ¥ g 60 i Movement
g ; g h g g i e Food Event
[A ol - | e . . el A~ 1: e Drink Event
> 40 I L SR . SEESEA] :
T £ ol 4 i .
te Mo L - . »
20 . . - . 20 - . Movement 201 .o
;‘ f. }_ ". * Food Event e .
o . R [o e Drink Event o - t .?' %
0 20 40 60 80 0 20 40 60 80 20 40 60 80
X Position X Position X Position

Figure 30: Agent trajectories during the first, middle, and last thirds of an episode. Movement becomes more

directed and strategic over time.

To better understand the agent’s evolving strategy during an episode, shows movement patterns
split into the first, middle, and final thirds of a single trajectory. In the early phase, the agent appears to
be in exploratory mode—visiting various regions, drinking frequently, and opportunistically eating when it
finds cows. By the middle third, its paths become more structured, covering broader areas with straighter
movement. In the final third, its behavior becomes even more goal-directed. The agent appears to revisit
known patches, suggesting that it has mapped out the environment and is actively exploiting its internal

representation to maintain survival.

49

These visualizations highlight that the agent not only discovers and remembers resource locations, but also
adapts its behavior based on past experience. It avoids predators efficiently, searches for new resources when
local ones are depleted, and exhibits clear transitions from exploration to exploitation. Overall, even under
the constraint of sparse path integration, the agent learns to navigate large environments using structured
and effective policies.

50

Part 11

Statistical Analysis of Space Representation

6 Theory — Memory Analysis

To investigate memory and spatial representation, we log detailed traces during simulation and training while
keeping the network weights 6 fixed. Specifically, we record:

e Environmental Data: Information about the agent’s surroundings, including positions, actions,
predator presence, and other map features.

e Neural Activity Data: The internal states of the agent’s neural network, including hidden states
from the LSTM and, if present, the CAN modules.

Using the environmental data, we analyze behavior by defining and labeling patches—map locations where
the agent has consumed resources multiple times. We then quantify how often and under what conditions
the agent revisits these locations. This allows us to study spatial preferences and decision-making patterns
using behavioral generalized linear models (GLMs).

From the neural activity data, we examine whether the LSTM encodes spatial memory by decoding posi-
tional information from its hidden states. We assess both population-level encoding and individual neuron
selectivity, identifying neurons that contribute significantly to spatial representation.

Additionally, we explore the role of the continuous attractor networks (CANs). Although earlier results
showed that CANs had minimal impact on training performance, we now assess their internal dynamics and
contributions. We analyze correlations, receptive fields, and how CAN states evolve over time to determine
whether and how the policy makes use of them.

The following sections provide the theoretical background for the behavioral and neural decoding analyses.
Much of the theory in Sections and was originally introduced in [19], though modifications have
been made for this thesis.

6.1 General Linear Models

A Generalized Linear Model (GLM) is an extension of ordinary linear regression that allows the dependent
variable (often called the response) to have an error distribution other than the normal distribution. GLMs
are widely used when your data come from different distributions in the exponential family (e.g., Normal,
Binomial, Poisson, Gamma).

Mathematically, a GLM can be expressed as:
Y ~ Distribution in exponential family, g¢(u) =n= X8, p= E[Y].

Here Y is the response variable, X is the matrix of predictors, 8 is the vector of coefficients and g(-) is the
link function which connects the linear predictor to the mean response p.

The goal of the agent is to survive and in order to survive it needs to find food, which is found within
a patch. We want to analyse how the agent chooses to visit patches that it has already seen before. We
therefore define the variable Y € {0,1} as the patch-rivisitation variable that is zero if the patch is not
revisited and is one if the patch is revisited.

The response is binary so it is natural to use the binomial model.The link function is then

(i) s

where p = P(Y = 1|X).

51

6.2 Decoding Spatial Representations from Hidden States

To investigate the agent’s memory and its ability to predict spatial positions, we analyze whether the hidden
states encode information about past, present, and future locations. If an agent can maintain an internal
representation of position, it may leverage this memory to generate a movement plan.

During the late stages of training, we recorded the agent’s hidden states h; for entire episodes, alongside its
spatial position (z,y). Our goal is to decode the agent’s position Y;;a: at a future or past timestep At using
only the hidden states at time ¢. Formally, we aim to learn a mapping function f from the hidden state space
to position:
_|Azear| 47 512

Yiear = [Ayurm = f(ht), hy e R,
This function allows us to assess whether the agent’s internal state contains information about spatial navi-
gation, potentially similar to biological representations.

Regularization and Model Selection

Since certain neurons remain inactive for entire episodes, the coefficients of f can become large, leading to an
ill-conditioned problem. To mitigate this, we introduce a regularization term that penalizes large coefficients,
resulting in the following loss function:

N

Lac(f) =Y (Viae— F(h))* +all fl%-

i=1
This formulation ensures that the model remains well-posed while preserving interpretability.
For each At, we need to fit a separate function f. The choice of model is guided by three key criteria:
1. Interperatibility: The ability to analyze how individual hidden states contribute to position encoding.
2. Performance: The accuracy of position predictions.
3. Computational Efficiency: The feasibility of training the model on large datasets.

Comparing Different Models

Selecting f as a neural network would likely yield high predictive performance but would obscure the con-
tributions of individual neurons and require longer training times. Kernel methods, such as the Radial Basis
Function (RBF) kernel, offer good interpretability and strong performance but suffer from high computational
costs:

N
fz) = Z%’K(m,xi% K (2, 2;) = exp(—7llz — 2:]*).

The generation of f requires inverting an N x N matrix, leading to a time complexity of O(N?), which is
infeasible for tens of thousands of data points per At.

To balance interpretability, efficiency, and accuracy, we use Ridge Regression:
f(he) = Ahy+b, AR peR2

This approach has a time complexity of O(Np?), where p is the feature dimension, making it significantly
more scalable. Additionally, linear regression provides a clear mapping between each hidden state and
spatial position, allowing for single-neuron analysis. Although its performance does not match that of kernel
methods, it remains sufficient for qualitative analysis.

For future analysis, incorporating kernel-based methods could offer valuable insights. These approaches can
capture complex, nonlinear relationships between neural activity and spatial position—potentially reveal-
ing differences in spatial representations across architectures that linear methods may miss. While linear
regression serves well for interpretability and neuron-level attribution, kernel methods may uncover subtler
representational structures critical for understanding architectural distinctions.

52

6.3 Single Neuron Decoding Theory

The contribution of a single neuron hil) to spatial representation may be related to specific patterns of activ-
ity. For example, certain clusters of neurons may exhibit increased activation in response to environmental
factors, such as the presence of predators. In this section, we analyze the distribution of individual neuronal
contributions to the agent’s position prediction.

Given our linear predictor:
Yitar = Ahy + b,

the predicted x-coordinate is expressed as:

512
T+ At = ZAlth(&l) + bl.
i=1

Each neuron’s contribution to the prediction depends on both its activation dynamics hf) and the corre-
sponding coefficient in the fitted model A;. To illustrate this, we examine the contributions of the first five
neurons from a randomly selected episode for At = 10.

Neuronal Activity Recording Absolute Coefficients

Hidden state (h¢)
Coefficient Magnitude

—1.00

Time

Figure 31: Left: Hidden state activity over time. Right: Magnitude of the fitted coefficient A;; in the
predictive model. The plot indicates that neurons with high activation variance tend to have smaller fitted
coefficients.

From we observe that both neuron 1 and neuron 4 contribute significantly to variations in the
predicted z-coordinate. Neuron 1 exhibits high variability in its hidden state h;, while neuron 4 has a larger
corresponding coefficient Ay;. The total contribution of a neuron to the prediction is determined by the
product of these two factors.

To quantify the contribution of individual neurons, we define a,(f) as the standard deviation of h,gi) within an
episode, and let o, denote the vector of standard deviations across all hidden states.

In our linear model, the variation in prediction attributable to neuron ¢ can be expressed as:

Contribution; = [Avi o,gi).
| Azl

For example, in the prediction of z;1 a¢, a large value of Alyiat(i) indicates that neuron ¢ has a strong influence
in the prediction of x4 A;. We define this term as the contribution of neuron 4 to the prediction.

53

6.4 Decoding Grid Cells

After training neural networks that include Continuous Attractor Network (CAN) modules, we focus on three
key areas of analysis:

i) How the velocity vector ¥ is generated,
ii) What information is encoded by the bump position in the CAN, and

iii) How the LSTM neurons utilize the CAN activity.

The third point—how LSTM neurons respond to CAN outputs—can be interpreted through the lens of
receptive fields. That is, we aim to characterize the specific patterns in CAN activity that drive LSTM
neuron activations.

To investigate this, we reconstruct the input from the CAN to the LSTM at a finer spatial resolution than
was used during training. Our hypothesis is that the dimensionality reduction applied to the CAN before
feeding it into the LSTM does not lead to any information loss. That is, the lower-dimensional input used
during training (shown in [Figure 32|(a)) preserves the same spatial information as the full-resolution version

(shown in [Figure 32(b)).

Although the training input a)) does not visually resemble a bump-like activation, we reconstruct
it into the higher-resolution bump representation in b) for subsequent correlation analysis. If our
hypothesis holds, then correlating the LSTM hidden states with the reconstructed, fine-grained CAN activity
should yield smooth spatial correlation maps—ideally exhibiting bump-shaped profiles.

[Figure 32]illustrates these two representations from actual training. They depict the same underlying function,
sampled at different resolutions. Panel (a) is the low-dimensional input used during training, while panel
(b) shows the full-resolution reconstruction. Since we assume that both representations contain equivalent
information, we use the latter to perform a more detailed receptive field analysis of the LSTM units.

Input to LSTM During Training Fine-grained Reconstruction of Input to LSTM

(a) Training input (reduced CAN) (b) High-resolution reconstruction

Figure 32: (a) shows the low-dimensional CAN output fed into the LSTM during training. (b) shows a
higher-resolution reconstruction of the same CAN activity used for correlation analysis.

54

6.4.1 Architecture 1

i) Velocities. In Architecture 1, the agent’s velocities are directly determined by its previous actions. We
refer to the transformation from actions to velocities as the application of wvelocity scales or frequencies. For
instance, a frequency of 2 implies that a translation action results in a velocity vector with magnitude |7] = 2.
We use the term ”frequency” because higher velocities cause the activity bump in the continuous attractor
network to traverse the rhombus-shaped sheet more rapidly, leading to firing patterns with shorter spatial
periods.

As introduced in we train three distinct strategies to generate velocity scales in this architec-
ture. In the analysis in section 7, we examine how each strategy translates actions into velocities and how
these velocities are distributed.

ii) Firing patterns. Since the bump dynamics in Architecture 1 are driven solely by velocities derived
from movement-action, it naturally encodes the agent’s spatial position over time. To demonstrate this, we
will visualize the firing patterns of individual grid cells resulting from the velocity scales described in part (i).
Specifically, we allow the agent to traverse the map and record the activity of one representative neuron in
each continuous attractor network (CAN). For each tile in the environment, we compute the neuron’s average
activation and present the results as a heatmap. This provides a clear spatial visualization of grid-cell activity
in response to the agent’s motion.

iii) LSTM receptive fields. Finally, we analyze how spatial information from the CANs is processed
by the downstream LSTM. We do this by measuring the Pearson correlation between each CAN unit and
the LSTM’s hidden state. Letting h; denote the LSTM hidden state and y, the CAN activity at time ¢, the
Pearson correlation coefficient is defined as:

Sorq (e — h)(ye — 1)

NS RTAEGTN, y o

To assess statistical significance, we compute a two-tailed p-value under the null hypothesis Hy : » = 0. Given
the sample correlation r and sample size n, the test statistic is:

n—2
t=r-\—75 18
r 1 _ T2 ()
This statistic follows a Student’s t-distribution with n — 2 degrees of freedom. The p-value is calculated as:

p=2-P(T>1|t]), Tr~tpa (19)
This p-value indicates how likely it would be to observe a correlation as strong as r purely by chance, assuming
there is no true relationship between the variables.
The smaller the p-value, the stronger the evidence against the null hypothesis:
e p < 0.05 suggests that the correlation is statistically significant at the 5

e p > 0.05 implies that the correlation may be due to random chance, and we fail to reject the null
hypothesis.

For our correlation tests, we use a sample size of n = 8002. The only unknown parameter in equations|[18|and
is therefore the correlation coefficient r. Solving these equations for r yields that |r| > 0.022 corresponds to
a statistically significant correlation. We note that this is a very low threshold, which means we are sensitive
to even weak linear relationships.

55

6.4.2 Architecture 2

i) Velocities. In architecture 2, the velocities are generated through a learned weight matrix W,;, meaning
that what the velocities represent is entirely determined by training. We will analyze how these velocities are
structured across the three strategies introduced in To assess whether the learned velocities
behave in a meaningful way, we inspect their mean and standard deviation. This provides insight into whether
the strategy produces sensible movement patterns and whether the approach might be promising for future
exploration.

ii) Firing patterns. Unlike architecture 1, the CANs in architecture 2 are not forced to encode spatial
position—they are free to represent any information that supports behavior. To investigate this, we compute
the Pearson correlation between the CAN activations and a set of behavioral variables. This allows us to
identify whether the CANs capture meaningful patterns or latent behavioral properties.

iii) LSTM receptive fields. Finally, we evaluate how much the LSTM depends on the information pro-
vided by the CANs. To do this, we compute the Pearson correlation between each CAN unit and the LSTM
hidden states. This analysis indicates to what extent the network is integrating CAN output into its memory
and decision-making processes.

7 Results — Memory Analysis

In this section, we present the results of the memory analysis conducted on the trained agents. We begin by
examining how the agent’s internal state and environmental features influence patch revisitation behavior,
providing insight into whether the memory architecture supports strategic foraging.

Following this, we evaluate the encoding of spatial information using both single-neuron and multi-neuron
decoding analyses. These analyses allow us to assess how well spatial position is represented across different
architectural configurations. The primary comparisons are between sparse versus non-sparse networks, and
agents with versus without explicit path integration.

We note that the inclusion of continuous attractor networks (CANs) did not significantly impact the quality
of spatial representations or decoding performance at the single-neuron level. As such, most of the focus
will remain on the effects of sparsity and path integration. Nevertheless, we conclude the section with an
exploratory analysis of the CANs to investigate their internal dynamics and potential roles beyond spatial
encoding.

Portions of the early subsections build on material previously presented in [I9], though the large majority of
the results shown here are novel.

7.1 Behavioural Decision GLM
We recall from that we use the following model for behavioral analysis:

log <1’_lu) = XB, u=P(Y =1[X).

To understand the factors influencing patch revisitation, we collect various features such as hunger level,
distance to the patch, and other environmental variables to construct the predictor matrix X. The binary
outcome variable Y indicates whether a patch was revisited, and we fit a binomial Generalized Linear Model
(GLM) to estimate the coefficients in 8. These coefficients, along with their 95% confidence intervals, are

visualized in

From the plot, we observe that higher food consumption (eatRate) reduces the likelihood of revisiting a
patch, likely due to resource depletion. However, water does not deplete, so increased drinking behavior is
associated with a higher probability of returning to a patch.

Interestingly, seeing predators and experiencing hunger do not significantly affect patch revisitation behavior.
Instead, the agent shows a preference for patches that are spatially and temporally close. Spatial proximity

56

Factors that influence patch revisitation choice

Standardized GLM coefficient values

EatRate DrinkRate PredRate Huﬁger Distance Recéncy Dwelltime Cows Unceftainty
Variable Category for Chosen Patch Relative to Non-chosen

Figure 33: Bar plot with 95% confidence intervals showing standardized GLM coefficient values for factors
influencing patch revisitation. A more positive coefficient indicates a greater likelihood of revisiting a patch.

is expected, as closer patches require less effort to reach. Temporal recency also plays a role, which aligns
with our later findings on memory decay—the agent’s spatial memory is strongest for recent locations.

Additionally, the amount of time spent in a patch increases the probability of returning, suggesting that
longer visits reinforce the importance of the location.

One of the most intriguing factors is uncertainty, which reflects how well the agent performs in the auxiliary
position-prediction task. The model suggests that when the agent struggles to estimate its position accurately
(i.e., when auxiliary loss is high), it is more likely to return to the patch. A possible explanation is that the
agent actively seeks locations where its path integration updates are less reliable, potentially allowing it to
refine its internal spatial model. This behavior suggests that the agent may be leveraging re-visitation as a
way to improve localization and memory stability.

7.2 Neural decoding — Correction for Model Biases

Recall from the theoretical discussion that our goal is to determine whether the agent’s hidden states h; € R5!2

encode spatial information. Specifically, we seek a linear transformation (A) and bias term (b) that predict
the agent’s position Y;ya; at a future (or past) timestep At:

Yieae =Ahs + 0.

A low prediction RMSE indicates that the hidden states effectively capture position-related information. We
explore various values of At to assess short-term memory (small |A¢]) and longer-term memory (large |At|).

In the following subsection, we identify key violations of model assumptions stemming from the continuous
and auto-correlated nature of the hidden-state data—issues that must be addressed to obtain reliable decoding
results. The subsequent section then presents the corrected decoding outcomes, comparing architectures and
examining how spatial representations evolve throughout training.

7.2.1 Problems with Normal Ridge Regression on an Episode

Decoder performance quantifies how well the agent’s hidden states (h-states) encode its position on the map.
A decoding error of 0 indicates perfect knowledge—i.e., the position is a linear function of the hidden state

57

with no residual error. Conversely, an error equal to the agent’s average displacement corresponds to complete
spatial ignorance, where predictions are no better than random guessing. If the error exceeds the average
displacement, it may suggest overfitting to the training set. For a well-performing agent, we therefore expect
decoding performance to fall between 0 and the average displacement, with the value indicating how many
tiles the decoder typically misplaces the agent. We also except that when the agent tries to predict far into
the past or future, the resulting RMSE is no better than the average displacement.

We begin with a standard decoding setup: a random train/test split, using 75% of the hidden states for
training and the remaining 25% for testing. We evaluate the decoder on a single episode. The results are

shown in

5lgecoding Past / Future (Ax, Ay) Relative to Origin

—— Performance of 1 episode
—===- Average displacement

[SS I N
oS O

— N
oS O

[w]

Decoder Performance (RMSE)

-10° -10" -10°0 10" 10" 10
Time Step of Position Decoded (At)

Figure 34: RMSE of one episode with a random train-test split. We observe that the RMSE is too low for
|At| &~ 1000 to be plausible, indicating that model assumptions for decoding are violated.

What we see is that the agent has almost perfect knowledge of its current position and its position At €
(—10,10). We also see that it has very good knowledge of position 1000 timesteps into the future and into
the past. However, it seems very unreasonable for a model to be able to predict position when |At| — oo,
and we should assume that for large |At|, the performance should be the same as the average displacement
or worse. The reason for this is that a condition for the ridge regression is that the data are i.i.d. However,
we can analyse the properties of the feature space and target space to see why this is not true.

7.2.2 Problems with Continuous, Temporal Auto-Correlated Data

A central challenge in decoding spatial position from hidden states is that both the features (h;) and the target
positions evolve continuously over time. The hidden states are high-dimensional and strongly temporally
correlated—adjacent states are very similar, and similar states tend to occur only within a narrow temporal
window. This smoothness, combined with a random train-test split, allows the model to exploit temporal
structure and implicitly encode time.

Problem with Features: Continuity and Uniqueness shows the L; distance between hidden
states across 2,000 consecutive timesteps. The following observations can be made:

e Consecutive hidden states (e.g., hs and hy_1) are highly similar, confirming that the feature space is
smooth and continuous.

e Hidden states at distant timepoints (e.g., hagoo) are relatively distinct from earlier states, indicating
temporal uniqueness.

e This structure allows a decoder to approximate the temporal index—or “timestamp”—of each hidden
state, even within a single episode, enabling unintended time decoding.

Problem with Outputs: Continuity and Interpolation As shown in [Figure 36 both the predicted and
actual position trajectories are continuous in space and time. This allows the model to interpolate smoothly
between training examples. Rather than generalizing based on meaningful spatial structure, the decoder may
instead exploit continuity in the data, producing interpolated outputs that fall close to—but not necessarily
aligned with—actual agent positions.

58

L1 Distance of h; from time t = 2000
i

L1 Distance

10— L Distance to Reference Row
0 - Reference Timepoint (t = 2000}
1
1000 1250 1500 1750 2000 2250 2500 2750 3000
Timepoint £

Figure 35: Li-based similarity search among hidden states over 2,000 timesteps. Nearby timepoints yield
nearby vectors in feature space.

Prediction vs True values for At = 500.

45 o

Tiles
&
[]

15— Te X-position []
Train prediction x-position
10 ® Test Prediction x-postion

16725 16750 16775 16800 16825 16850 16875 16900 16925
Timestep t

Figure 36: Predicted test trajectories versus training data for a single episode. The model tends to interpolate
between temporally adjacent points.

7.2.3 Addressing the Feature Space Problem: Training on Multiple Episodes

Training on a single episode allows the model to implicitly encode time in the hidden states h;, since each
timepoint is unique and temporally correlated. To mitigate this issue, we train the decoder on multiple
episodes. This introduces greater variability in the hidden state trajectories, reducing the decoder’s ability
to rely on time-based cues alone.

shows how the root-mean-square error (RMSE) changes as more episodes are included in the
training set.

We observe that increasing the number of episodes leads to a general rise in RMSE, indicating that the model
can no longer exploit implicit time encoding as effectively. Nonetheless, even with 30 training episodes, the
RMSE for intermediate At values remains significantly below the average displacement baseline. This suggests
that some meaningful positional information is still preserved in the hidden states.

Predictions at large temporal lags (At — 1000) still perform better than expected by chance, indicating that

59

Decoding Past / Future (Ax, Ay) Relative to Origin

50
—— larena
401 —— 10 arenas
30 arenas

(O8]
o

—-==- Average displacement

[\
(e}

\

o

Decoder Performance (RMSE)

-10° 10" -10"0 10° 10" 10
Time Step of Position Decoded (At)

Figure 37: RMSE across increasing numbers of training episodes. As more episodes are added, it becomes
harder for the model to decode position purely from implicit time signals, resulting in higher overall RMSE.

temporal autocorrelation and data leakage issues remain only partially resolved.

7.2.4 Addressing the Output Space Problem: Temporal-Chronological Split in Train and Test
Data

To ensure that decoding performance reflects genuine generalization rather than interpolation, we restructure
the train—test split to enforce temporal separation. Instead of randomly shuffling timepoints, we split each
episode chronologically: the first 75% of timesteps are used for training, and the remaining 25% are reserved
for testing. This strategy prevents the decoder from leveraging temporally adjacent samples and better
evaluates its ability to extrapolate to truly unseen data.

This approach also complements the solution to the feature space problem by being applied across multiple
episodes, thereby reducing overfitting to specific temporal patterns.

Decoding Past / Future (Ax, Ay) Relative to Origin

50
—— larena
40 —— Sarenas
30 arenas

W
(e

—-==- Average displacement

[\
(=)

1

Bz

-10° 10" -10°0 10° 10" 10
Time Step of Position Decoded (At)

o

Decoder Performance (RMSE)

Figure 38: RMSE of a sparse path-integrating agent, evaluated using a temporally structured train—test split.
This setup corrects for unrealistic model assumptions in continuous data.

As shown in [Figure 38, the RMSE now converges toward the agent’s average displacement for large |At|,
as expected. This suggests that the revised evaluation setup yields a more faithful assessment of positional

encoding in the hidden states. The RMSE levels off at approximately 10 tiles, indicating moderate spatial
accuracy.

Interestingly, for time shifts within the interval At € (—100,100), the RMSE remains below the average
displacement. This may reflect the agent’s ability to retain short-term spatial memory or anticipate near-
future locations—suggesting a meaningful encoding of position within this local temporal window.

In summary, obtaining a realistic measure of spatial encoding requires training on multiple episodes and

60

using a temporally ordered train—test split. These steps are essential to prevent the decoder from exploiting
time correlations and to accurately assess how well the agent represents its position.

7.3 Neural Decoding — Spatial Representation Results

Having corrected for methodological biases in the previous section, we now turn to the core decoding results
to assess how spatial information is represented in the agent’s hidden states. Using the revised training pro-
tocol—multiple episodes and temporally ordered splits—we evaluate how well different architectures encode
both absolute and relative position.

This section begins by analyzing the ability of agents to represent relative spatial information, followed by
a temporal analysis of spatial encoding throughout training. We then compare decoding performance across
architectures to assess the effects of path integration and sparsity. Finally, we examine whether adding
continuous attractor networks (CANs) improves positional awareness, and conclude with a summary of the
key findings.

7.3.1 Comparing RMSE Relative to Origin

We now compare the decoding performance of different base architectures with respect to path integration
and sparsity. The results reveal clear distinctions in how well each model encodes positional information.

As shown in the non-path-integrating (nPI) agent fails to learn an accurate representation of
position. Without an explicit training signal for location, it does not implicitly develop a robust spatial
encoding. The dense path-integrating (PI) agent performs somewhat better, suggesting that the inclusion
of a path-integration loss helps guide the learning of position-related features. However, the sparse PI agent
outperforms both alternatives, likely due to its architectural capacity to assign specific neurons to encode
spatial structure more efficiently.

%ecoding Past / Future (Ax, Ay) Relative to Origin
5

—— Sparse network
—— Dense network

Not path integrating
] -==-Average displacement

W A
oS O

—_
(=)

i

Decoder Performance (RMSE)

o

-10> -10' -10"0 10° 10" 10
Time Step of Position Decoded (At)

Figure 39: RMSE comparison between sparse PI, dense PI, and non-PI agents.

Both path-integrating agents demonstrate strong positional awareness for short-term predictions within the
range |At| < 50. This suggests that the agents maintain a short-term memory of past movement and are
capable of forming near-future positional plans based on recent experience.

7.3.2 Relative RMSE

Since the sparse path-integrating agent exhibited the highest level of positional awareness among the tested
architectures, we focus this analysis on that model to investigate whether it also encodes relative position.
In this context, relative position refers to the displacement vector from the agent’s current location to its
position At timesteps in the future. This shifts the decoding task from predicting absolute coordinates to
capturing the direction and magnitude of movement over time.

Figure 40| displays the root-mean-square error (RMSE) for these relative position predictions, evaluated
across a range of time lags. The dotted line represents the agent’s average relative displacement, serving as
a baseline that would be expected if the agent had no informative internal representation.

61

Decoding Past / Future (Ax, Ay) Relative to Self

W
(e

—— larena

—— 5 arenas

o
[e)

30 arenas
===-Average displacement

—_ N W
[= N)

-10° -10" -10°0 10" 10" 10
Time Step of Position Decoded (At)

(=)

Decoder Performance (RMSE)

Figure 40: Relative-position RMSE over varying At for the sparse path-integrating agent. The dotted line
indicates the agent’s average relative displacement. Prediction error largely follows this baseline, suggesting
weak relative encoding.

For most values of At, the RMSE remains within the confidence interval of the average displacement, sug-
gesting that the agent’s hidden states carry only weak signals about relative position. This indicates that
the model is not explicitly encoding the direction or magnitude of future movement in a way that supports
reliable decoding.

However, an exception appears in the short-term past (At € (—20,0)), where the RMSE dips slightly below
the average displacement. This suggests that the agent retains some memory of recent movements, allowing
it to better estimate where it has just come from. Still, this effect is transient, pointing to the fact that
detailed relative positioning is not a central component of the agent’s internal model. Instead, it appears
that absolute location—rather than relative displacement—is more strongly represented, likely because it
plays a more critical role in task performance and reward acquisition.

7.3.3 Spatial Representations Across Training

To understand how spatial representations evolve during learning, we track the positional encoding capabil-
ities of the sparse path-integrating agent across different stages of training. Given that this agent previously
showed the strongest spatial awareness, it provides a useful case study for examining how such representations
emerge and improve over time.

Decoding Past / Future (Ax, Ay) Across Training

W
o

From epoch 10k

40 1 —— From epoch 40k
From epoch 90k
30 ! ===+ Average displacement

L

—_
o

(=]

Decoder Performance (RMSE)

-10> -10' -10"0 10° 10" 10
Time Step of Position Decoded (At)

Figure 41: RMSE for absolute position decoding at various stages of training, showing improved spatial
representations over time.

We apply the same linear decoding procedure as before, evaluating how well the hidden states predict absolute
position. However, care must be taken to ensure fair comparisons across training epochs: later in training,

62

episodes tend to be longer, meaning that simply decoding a fixed number of episodes would introduce bias
due to unequal data availability.

To control for this, we extract the first 20 episodes from epoch 10,000 that each have a length greater than
6,000 timesteps. From these, we use a consistent window of timesteps 500 to 5,500 for the decoding analysis.
This ensures that all decoding models are trained on comparable datasets across epochs. The resulting RMSE
values are shown in

The results reveal a clear trend: as training progresses and the agent’s overall performance improves, its
ability to encode spatial position becomes more accurate. This suggests that the agent incrementally refines
its internal spatial model in conjunction with learning to solve the task.

7.3.4 RMSE with CANs

We also examine whether adding continuous attractor networks (CANs) enhances spatial encoding in the
agent’s hidden states. As shown in |[Figure 42] we compare the sparse path-integrating (PI) agent with three
different CAN-based strategies.

Decoding Past / Future (Ax, Ay) Relative to Origin
30 17

— Regular Sparse PI -
— CAN with Trainable r P1

CAN with Constant Vel Scales PI
CAN with LSTM Velocity PI

- Average displacement

=]
(=]

—_
=]
|

=]

"2 ‘ 00 a0 1 "2
-100 -10 -10 10 10 10
Time Step of Position Decoded (Af)

1

Decoder Performance (RMSE)

Figure 42: Decoding RMSE for the standard sparse PI agent versus three CAN-enhanced variants.

Across all tested architectures, the addition of CANs does not lead to a measurable improvement in position
decoding. The RMSE curves for the CAN-enhanced models largely overlap with that of the baseline, and
the confidence intervals are broad, limiting the strength of any conclusions.

However, one notable trend is that the confidence bounds for the CAN-augmented agents are consistently
wider than those of the baseline. This may suggest that the CAN introduces additional variability or noise
into the memory representations, which could interfere with the network’s ability to form stable spatial
encodings.

7.3.5 Summary of Encoding Findings

Our analysis reveals several important insights into how spatial information is represented in the agent’s
hidden states:

e Path integration enhances short-term spatial encoding: Agents trained with an explicit path
integration objective (PI agents) show markedly better performance in predicting positions within a
short temporal window. This indicates that path integration facilitates the development of internal
spatial representations.

e Hidden states are continuous and temporally auto-correlated: The smooth, high-dimensional
structure of the hidden states enables the model to infer time from hidden state trajectories, especially
when decoding is performed on a single episode. Training on multiple episodes mitigates this issue,
forcing the model to rely more on genuine spatial information than implicit time encoding.

e Chronological splitting reveals true positional knowledge: Using a temporally structured
train—test split removes the decoder’s ability to interpolate between temporally adjacent states. Under

63

this setting, PI agents still perform well for At € (=100, 100), demonstrating a meaningful, short-range
encoding of position.

e Relative position is weakly represented: Although the agent shows some awareness of recent past
movement (At € (—20,0)), its hidden states primarily encode absolute position. This may be due to
the consistent grid tile layout across environments, making absolute positioning more directly beneficial
for navigation—akin to how some animals use global cues like geomagnetic fields [37].

e CANs do not improve linear spatial decoding: Incorporating continuous attractor networks
did not enhance position decoding, and in some cases increased variance. This suggests that CANs
may introduce noise or encode spatial features in a nonlinear manner that is not captured by linear
regression.

e Spatial representations improve with training: For the sparse PI agent, decoding accuracy im-
proves over the course of training. This indicates that spatial awareness develops alongside overall
performance, reflecting a growing internalization of positional structure as the agent becomes more
competent.

7.4 Single Neuron Decoding

Recall that in our linear decoder, each neuron s in the hidden state h; € R%'? can contribute differently to
the predicted position. We define the contribution of neuron i to the prediction of the z-coordinate as:

Contribution, , = |A;],
where A; ; is the corresponding entry in the linear transformation and o is the standard deviation of the
hidden state of neuron ¢ over the dataset.

In this analysis, we exclude architectures that include continuous attractor networks (CANSs), as their results
closely resembled the corresponding non-CAN versions, but with greater noise and less interpretability.

7.4.1 Contribution Distributions

To visualize these contributions, we can plot how the top-contributing neurons vary as a function of At,
revealing how individual neurons affect predictions at different time offsets into the future. shows
five of the most influential neurons from the four models we have trained on the “distance to origin” prediction
task.

Visualization of the Neurons with Largest Contributions for Different At

Non-sparse nPI Non-sparse PI
50
AN A

100 —— Node 229

‘é frode ! '5 Node 358

‘g‘ Node 322 E 0 - 2’94

T 0 5 —— Nodedss 7 N"de 7S

g — Nodeloo 8 AN

—— Node 357 _sp LT /Rodes10

-100 - :
—500 0 500 =500 0 500
At At
Sparse nPI Sparse PI
100
. —— Node 450 ~ 25 _ de 225
g Node 423 E Node 225
B, — Node20o 2 0 Yrisze
2 —— Node 140 g — Node 389
S —— Node 365 g —_— guieﬂl.z;;
100 \v V _s0 ode 15
—500 0 500 =500 0 500
At At

Figure 43: Five high-contribution neurons for distance-to-origin prediction in the four different models we
have trained. The contributions are plotted without absolute magnitude so that the behavior remains smooth
when crossing the x-axis.

From these plots we can look at only a limited window of predicative models too see how contributions of

64

single neurons manifests in a certain future prediction. For now, let us look at the models in the range
At € (0,20).

Distribution of Contributions: At € [0, 20]

Histogram (Linear Scale) Histogram (Log Scale)
I sparse PI 104 I sparse PI
10000 71 sparse nPI [sparse nPI

8000

6000

Frequency
Frequency

4000

2000

%.0 0.5 1.0 1.5 2.0 2.5 3.0 5 10 15 20
Contfribution Contribution

Figure 44: Histogram showing the frequency of contributions for the path-integrating and non-path-
integrating agents among all the neurons in the LSTM layer.

We want to examine the distribution of contributions across all neurons by plotting histograms of these values
(see [Figure 44)). Most neurons have negligible impact on the decoder’s output, suggesting that only a small
fraction of the hidden units strongly modulate positional predictions. Notably, in the sparse path-integrating
agent, we see both a larger number of neurons with very small contributions and a subset of neurons with
larger contributions than in the non-path-integrating case.

7.4.2 Top Contributions Comparison

To compare models more directly, we focus on the highest-contributing neurons when predicting near-future
time steps (At € [0, 20]). illustrates that the sparse path-integrating (PI) agent has a handful of
neurons that dominate the positional prediction more than those in other architectures. In general, sparse
models appear to concentrate the bulk of their predictive capacity in a smaller subset of neurons. This might
indicate that the because the sparse network has fewer training parameters it has been forced to find a
more effective representation of space in memory.

Average Contribution of Top Percentages with 95% Confidence Intervals for At € [0, 20]

Top 30% Average Contribution Top 10% Average Contribution Top 1% Average Contribution

8 L
= I
S
z° I
E
8
9]
&4
)
3] T
4 T 5o

=+
2
- = = =
0 PI nPI Sparse PI Sparse nPI PI nPI Sparse PI Sparse nPL PI nPI Sparse PL Sparse nPL
Model Model Model

Figure 45: Comparing top neuron contributions across different architectures for near-future predictions
(At €]0,20]). The sparse PI agent has higher contributions among the top-contributing neurons.

However, we are also interested in the contributions across the entire range of At € (—1000,1000). In
Figure 46] we plot the average contributions of the top 1% and top 10% of neurons for all models across
different At values. The sparse PI architecture exhibits a more pronounced reliance on a small number
of high-contribution neurons, especially around near-future and near-past time offsets. This observation
suggests that sparse path-integrating models localize spatial encoding into fewer, more specialized neurons.

In summary, these single-neuron analyses reveal two main patterns:

65

Contribution of individual neurons in Models with different future timestep prediction

:\5 PI-1%

- nPI-1%

? 100 Sparse PI-1%
<

g Sparse nPI-1%
z 75
2

g
o 50

35 PI-10%

2 WPI-10%

? Sparse PI-10%

; 30 Sparse nPI-10%

5]

2

£ 25

5]

]

3 2 1 1 2 3
-10 -10 -0 0 10 10 10
At

Figure 46: Average contributions of the top 1% and top 10% of neurons, plotted against At. The path-

integrating agents have bumps near At = 0 indicating that few neurons are very active in short term memory
of location.

1. Only a small fraction of neurons significantly influence the position decoder, highlighting the agent’s
reliance on specialized subsets of hidden units.

2. Sparse path-integrating agents further concentrate these high contributions among fewer neurons, which
may indicate a more “compact” representation of spatial information.

7.4.3 RMSE after Removing Top Contributing Neurons

To validate the functional importance of these high-contribution neurons, we perform a lesion analysis by
comparing decoding performance under three conditions: using all 512 neurons, using only the top 50 most
contributing neurons, and using the bottom 50 least contributing neurons. Here, a neuron’s total contribution
is defined as the sum of its contributions to both z- and y-coordinate predictions. As shown in

5lgecoding Past / Future (Ax, Ay) Relative to Origin

— 100 percent hstates

N
<)

1 — top 10 percent hstates
least 10 percent hstates

9%

o)
1
1
1

Decoder Performance (RMSE)
S
K\

Average displacement

—_
(=)

o

-10° 10" -10"0 10° 10" 10
Time Step of Position Decoded (At)

Figure 47: Decoding RMSE using all neurons, the top 50 contributors, and the bottom 50 contributors. The
top 10% recover nearly full decoding accuracy, while the bottom 10% perform no better than chance.

the top 10% of neurons almost fully recover the spatial decoding performance of the entire hidden state. In
contrast, the bottom 10% contribute no useful information. This striking difference highlights the emergence

of a compact, specialized subset of neurons that dominate spatial representation, particularly in the sparse
PI architecture.

66

7.4.4 Coefficient Profiles

To further explore how spatial information is distributed across the hidden state, we examine the coefficient
profiles learned by the linear decoder. These coefficients, obtained from the ridge regression model, reflect
the relative weight assigned to each neuron when predicting position.

compares the coefficient magnitudes for both sparse and dense path-integrating networks. In the
sparse model, we observe fewer pronounced peaks, indicating that only a small subset of neurons are actively
used in position decoding. In contrast, the dense model shows a broader spread of moderate contributions
across many neurons.

Another notable difference is the apparent overlap between the neurons involved in predicting past and future
positions. In the sparse network, the same neurons often contribute to both forward and backward prediction,
suggesting that certain units serve as consistent spatial encoders across time. This redundancy is less evident
in the dense network, where the coefficients for past and future predictions appear more distinct.

Coefficient Profiles for Sparse Network Coefficient Profiles for Sparse Network

—— Past At=-50
Future At=50

—— Past At=20
400 Future At=20

e— —

0 100 200 300 400 500 0 100 200 300 400 500

- >

"3
3
S

250

Ridge coef weight vs)

Ridge coef weight
b w
2 5
S - 2
=

-250

Neuron ID Neuron ID
C Coefficient Profiles for Dense Network D Coefficient Profiles for Dense Network
4001 — Past At=20 400
.;;ﬂ Future At=20 .E’
‘S 200 ‘S 200
= E
3 %
g 0 W«L ,T»MTJ"F« 2 o
o P
) S
g
2 200 = 200 —— Past At-50
Future At=50
400
0 100 200 300 o 100 200 300 400 500
Neuron ID Neuron ID

Figure 48: Coeflicient profiles from ridge regression for sparse and dense PI networks. The sparse model uses
fewer neurons, and shows greater overlap between past and future predictions.

7.5 Grid Cells — Results
7.5.1 Architecture 1

We previously introduced three different strategies for generating velocity scales in Architecture 1. In this
section, we evaluate each of them in turn:

e Fully trainable and independent velocity scales: Each CAN module learns its own scale without
constraint, allowing for maximum flexibility.

e Trainable geometric scaling (two strategies): The velocity scales follow the form vel; = fy - r?,
where we explore two variants—one with r trainable and fy fixed, and another with fy trainable and
r fixed.

Fully trainable and Independent Velocity Scales. illustrates how the learned velocity scales
evolve over the course of training. Each CAN is allowed to independently learn its own transformation from
action to velocity. Across all networks, we observe a tendency toward high-frequency scaling—significantly
larger than what would be biologically plausible. One possible explanation is that the network seeks to
amplify movement signals in the bump dynamics, enabling the LSTM to detect and integrate these signals
more easily. This may indicate that the network develops a form of “signal-based” movement tracking, rather
than establishing a grounded spatial representation.

While this strategy results in active CAN dynamics, it appears to hinder the development of useful spatial
codes. shows the firing patterns at the start and end of training for a 96 x 96 grid-world. In the
latter case, the firing patterns lack clear spatial structure. The simultaneous activation of all three CANs

67

Velocity Scales of Different Parameters

3 CANSs - Pathint 5 CANSs - Pathint
g 1] f E _
g g f’
Timestamp Timestamp
3 CANs - No Pathint 5 CANSs - No Pathint
£ 2 2
= =

0+ T T T T T T T T T
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Timestamp Timestamp

Figure 49: Learned velocity scales throughout training. Frequencies are consistently higher than those
observed in biological systems.

across multiple locations implies that the representation is ambiguous and cannot uniquely specify the agent’s
position.

Firing Pattern of a Neuron in Terminal Frequency of the CANs

(a) Early training (b) Late training

Figure 50: CAN firing patterns early (a) and late (b) in training. No clear spatial structure emerges, and
overlap across CANs creates ambiguity.

Despite the fact that the velocity weights are actively used (i.e., non-zero), the scales remain tightly clustered,
and the firing activity lacks diversity across CANs. This suggests that the agent utilizes the CANs, but not
as a spatial map. Due to the lack of structured encoding, we do not analyze the receptive fields of the LSTM
neurons for this condition. The next strategies offer more insight into how different constraints on the velocity
scales affect spatial coding.

Trainable Geometric Scales. Next, we examine a constrained version of the velocity scales defined by
the geometric form: '
scale; = fo - 1,

with M =5 CAN modules. We initialize fy = 0.2 and » = 1.5, and then run two variants: one in which fy is
trainable and another where r is trainable. Both configurations are tested in sparse agents with and without
path integration. The top row of shows how the parameters fq or r adapt during training, while the
bottom row illustrates how this affects the range of individual velocity scales. As with the fully independent
case, the network converges to relatively large frequencies. This suggests a network-wide preference for strong
bump displacements, likely reinforcing signal-based movement tracking rather than spatial encoding. The
similarity across path-integrating and non-path-integrating agents implies that CANs are not being used in
a manner optimized for navigation.

68

PI vs non-PI Parameter Evolution for Geometric Velocity Scales

Tracking the Trainable I Parameter Tracking the Trainable f Parameter
250 L5 —m
non-PI non-P1
2.251
2 1.0 1
§ 2.00+
1.751 0.51
1.501 | . | | |
Velocity Scales for I Trainable Velocity Scales for f Trainable
8 Pl 8 PI
non-PI non-P1
61 61
]
7; 41 41
21 21
01 ‘ i ‘ : 01 i : i i
0 20000 40000 60000 80000 0 20000 40000 060000 80000
Timestamp Timestamp

Figure 51: Scales learned throughout training. Both variations learns approximate same distribution for the
velocity scales.

To explore whether any spatial structure emerges, we visualize the firing patterns for the path-integrating

agent under the “trainable r” configuration (see [Figure 52)).

Firing Pattern at Start (f;) and End (ﬁ) of Training

-

f0=02-242° f=0.2.242 fo=02.2.422 f3=0.2.2.42° fa=02.242¢

Figure 52: Firing patterns for CAN modules in the path-integrating agent with trainable r. Despite high
frequencies in some modules, others show potentially spatially informative activation.

Even though f3 and f4 operate at frequencies too high for meaningful spatial encoding, we see that fo, fi
and f5 have firing patterns that could be used as spatial information. To assess this, we compute the Pearson
correlations and reconstruct receptive fields between CAN units and LSTM hidden neurons.

First, neuron 379 in the LSTM exhibits the strongest single-unit correlation (|r| = 0.53) with one of the
neurons in one of the CANs. Its receptive field, shown in reveals a pronounced negative association

69

with a specific bump location in the first CAN and neglible correlation elsewhere.

Receptive Field of LSTM Neuron 379 from CAN Inputs

CAN 0 CAN 1 CAN 2 CAN3 CAN 4

0.0
“H

0.5

Pearson r

Figure 53: Receptive field of LSTM neuron 379 with respect to all five CAN modules. Only CAN 1 shows
significant negative correlation.

We also identify neuron 54, which has the highest sum of absolute correlations across all five CANs.
Its receptive field (Figure 54)) shows strong, statistically significant interactions with multiple CAN mod-
ules—indicating a distributed integration of spatial signals.

Receptive Field of LSTM Neuron 54 from CAN Inputs

CANO CAN 1 CAN2 CAN3 CAN4
l | -

Figure 54: Receptive field of LSTM neuron 54, showing significant coupling with multiple CAN mod-
ules—particularly those with both low and high frequencies.

I
¥}

=4
(=1
Pearson r

Interestingly, the receptive field patterns resemble first-order Fourier basis functions that encode translation
behaviors of the bump. This suggests that, under geometric constraints, the network may recruit CAN
outputs in frequency-selective combinations that support navigation-related dynamics rather than explicit
spatial encoding.

Conclusion. Across all decoding analyses of Architecture 1, we find that the CANs are not used effectively
for spatial encoding. Despite testing various strategies for generating velocity scales—fully trainable and
geometrically scaled—we consistently observed that the agent favored high-frequency velocity mappings.
These do not correspond well to biologically plausible spatial representations and suggest that the CANs
primarily produce transient, high-variance signals rather than stable spatial codes.

Receptive field analyses further reveal that although some LSTM neurons exhibit localized correlations with
individual CAN modules, these neurons are not the strongest contributors to position prediction. This
supports the hypothesis that the network does not rely on CANs for encoding position. Instead, positional
awareness—where it exists—appears to arise independently within the LSTM dynamics.

While some spatial structure was observed in low-frequency CAN modules, these signals were weak and insuf-
ficient to drive meaningful decoding performance. Overall, the decoding results indicate that the architectural
design of Architecture 1 does not incentivize or enable effective use of the CANs for spatial representation.
If such usage exists, it may depend on nonlinear interactions not captured by our current linear decoder.
Alternative architectures or loss functions may be required to promote the use of CANs as spatial bases.

7.5.2 Architecture 2

We recall that Architecture 2 implements three different strategies for generating velocities from the hidden
state. In this section, we evaluate each approach in turn:

e Trainable nonlinearity: v; = tanh(Wh;), where the weight matrix W is learned and then squished
into a reasonable interval (—1,1).

e Trainable linear mapping: v; = Why, where W is a fully trainable weight matrix.

e Fixed random mapping: v; = Wh;, where W is randomly initialized and held constant throughout
training.

70

Trainable Nonlinearity. We begin by examining the behavior of the velocity-generating mechanism in
the architecture where the weight is trainable and then the tanh activation function is applied. The resulting
velocities v; are effectively constant over time, taking values close to the extremes (+£1, £1) — the saturation
limits of the tanh function. This indicates that the network has learned to output static, maximal velocities,
thereby ignoring any meaningful temporal information. In practice, this renders the CANs funcionally useless,
as each bump moves uniformly in a fixed direction and speed across all episodes.

Since the CANs are always initialized at the same position at the start of each episode, the only information
they may encode is the initial timestep. This is reflected in the receptive field analysis: only one LSTM
neuron (ID 450) shows a statistically significant correlation with the CANs, peaking at 0.146. The receptive
field of this neuron appears to track the initial bump position, potentially enabling the network to establish
the fixed output velocity at the start. All other hidden states exhibit negligible correlations.

Receptive Field of LSTM Neuron 450 from CAN Inputs

CAN O CAN 1 CAN 2

"v
*'

0.10

L 4
005

I3 *"v Vi
AV ~AlE

—0.05

Correlation

o

Figure 55: Receptive field of the most strongly CAN-correlated LSTM neuron (ID 450), indicating weak
overall influence of the CANS.

In summary, the use of a trainable tanh activation allows the network to trivially suppress the CANs by
saturating their outputs. This results in fixed, non-informative velocity signals and minimal interaction
between the CANs and the rest of the architecture. To encourage meaningful use of the CAN dynamics, we
next examine architectures without a nonlinearity, where the network cannot rely on saturation and must
instead learn to utilize the CANs more actively.

Trainable Linear Mapping. We now examine the setup where the velocity vector v; is produced by a
trainable linear transformation of the hidden state: v; = Why, without any nonlinearity. For this analysis,
we focus on the path-integrating agent using three CANs.

As illustrated in the resulting velocities are exceptionally large. Many component-wise values
exceed 20, meaning that the bumps in the CANs could theoretically rotate more than once around the
toroidal space in a single timestep. This magnitude is conceptually problematic: if the bump completes
multiple wraps per step, its position becomes ambiguous, undermining its role as a spatial code.

Velocity 0 Velocity 1 00 Velocity 2
154 gt Ty ¢ ‘ 100 2
L Tos pat 1 P 1 J A g
¥ | 20 - 25 2
*. i) o S
| PN 7) B i s 075 §
10 . -#-_ e o' al 5.0 ooy 4
= . 5!.*' oy 104 “{v: f:‘ oy 1’3}, & 0 50‘45'
5] (O o 4 2 » o .5
> > ,,1. y = =15 . ; 2
d i w 35
5 ¥ oy
04 ;;? [-10.0 »..¢ 025 ¢
“gy ’:-‘z g
o L —12.5 4 0.00&#A
—2 0 2 0 10 2.5 0.0 2.5
vel x vel x vel x

Figure 56: Velocity outputs during training with a trainable linear mapping. Several components exceed a
magnitude of 20, causing bumps to rotate multiple times around the torus.

We summarize the statistics of these velocities in the table below. As seen, CAN1 exhibits the highest average
magnitudes and variability:

71

Mean (v, vyy) SD (vg,vy)

CANO (0.787, 12.955) (0.659, 1.260)
CAN1 (4.933, 12.256) (3.842, 6.083)
CAN2 (—0.924, —8.298) (0.915, 1.592)

Table 4: Velocity statistics for each CAN, showing directional mean and variability.

To assess whether the CANs encode meaningful environmental signals, we computed correlations between
CAN activity and different environmental features. As shown in the strongest (although weak)
correlations were found with distance to skeletons. However, these correlations barely reach significance and
may not reflect meaningful use of the CAN signals by the agent.

CAN 0 vs Distance to Skeleton CAN 1 vs Distance to Skeleton CAN 2 vs Distance to Skeleton 0.050
’ 0.025 o«
L
~ 0000 3
3)
—0.025

Figure 57: Weak correlations between CAN outputs and environmental variables, with the strongest signals
related to skeleton structure.

To further understand the bump behavior, we analyzed accelerations—defined as the change in velocity
across timesteps. The statistics, shown below, indicate that despite the large instantaneous velocities, bump
accelerations are moderate and comparable across CANs. This suggests that while velocities are extreme,
they may be relatively stable across time.

Mean (a;,a,) SD (ag,ay)

CANO (0.141, 0.232) (0.177, 0.324)
CAN1 (0.365, 0.579) (0.535, 0.867)
CAN2 (0.154, 0.235) (0.199, 0.332)

Table 5: Acceleration statistics per CAN, showing stable dynamics despite large velocities.

In summary, while this architecture allows for richer interactions between the hidden state and CANs com-
pared to the saturating tanh case, the learned velocities are still implausibly large. This likely limits the
CANS’ utility for encoding spatial information, as repeated toroidal wrapping undermines location-specific ac-
tivity. The weak correlations with environmental variables further suggest that the network is not leveraging
the CANSs in a meaningful or interpretable way.

Fixed Random Mapping In this configuration, the velocity vector v; = Wh; is determined by a fixed,
randomly initialized weight matrix W. We analyze this setup in a path-integrating agent using three CANs.

[Figure 58|shows the velocity profiles over time. Unlike previous architectures, the velocities here remain within
a moderate range, with maximum values around 2.5. This magnitude falls within a biologically plausible
regime and aligns with the upper bound required for generating structured grid-like (e.g., hexagonal) firing
patterns.

The summary statistics in the further support this stability:

Despite the promising range and variance, an important limitation is that each velocity component rarely
changes sign. For instance, CANO’s v, component component remains consistently negative, indicating that
the bump effectively rotates in a single direction around the torus throughout an episode. This severely
restricts the expressiveness of the CAN and may stem from the fixed linear mapping lacking sufficient com-

72

Velocity 0 Velocity 1 Velocity 2

B T -:;-':" 1o 1,00 &
LR, ™ <
1ol :-;;‘_;;Mm 05 075 8
> '“"3—;5‘ r’%ﬁ > é
=t e e
5 LS ;’;{ S| 00 05073
of Togls " "
—2.01 & X -'.-lT"‘ K -{““ —0.5 0.25 =]
-25 s -1.0 0.00 &
-1 0 1 2 1 2 3
vel x vel x vel x

Figure 58: Velocity outputs over time with fixed random weight mapping.

Mean (vg,vy) SD (va,vy)

CANO (—0.403, —1.466) (0.240, 0.285)
CAN1 (1.442, —0.166) (0.449, 0.332)
CAN2 (2.150, 1.861) (0.383, 0.282)

Table 6: Velocity statistics per CAN. The values suggest moderate and consistent motion.

plexity. Adding a nonlinear transformation or deeper projection layer could introduce more diverse bump
dynamics.

To better understand the bump behavior, we examined velocity changes across time (i.e., acceleration). The
results in and the accompanying table reveal modest variation, further indicating that the CANs
operate in a relatively stable, albeit constrained, regime.

Acceleration 0 Acceleration 1 Acceleration 2

LOOA%‘J
el
2
075 8
7
a 0.50 E‘
33 =]
B T
i3]
025 ¢
2l g
X 0.00

05 00 05

accx accx acc x

Figure 59: Acceleration over time. The magnitudes remain modest, consistent with stable bump motion.

Mean abs(az,ay) SD abs(ag,ay)

CANO (0.066, 0.068) (0.081, 0.083)
CAN1 (0.091, 0.084) (0.107, 0.107)
CAN2 (0.076, 0.089) (0.089, 0.105)

Table 7: Acceleration statistics per CAN (values shown as (z,y) points).

To assess functional relevance, we correlated the CAN activity with high-level behavioral variables. As shown
in[Figure 60} the only significant relationship was found with the distance to the ranged predator (i.e., skeleton
with bow and arrow). Although this correlation is weak, it indicates that the network has learned to encode
some task-relevant spatial variable via the CANs.

Finally, we examined how CAN activity influences LSTM neurons. The neuron with the strongest receptive
field—unit 457—shows a significant localized correlation, consistent with encoding some spatial information
linked to bump location or environmental cues.

73

CAN 0 vs Distance to Skeleton CAN 1 vs Distance to Skeleton CAN 2 vs Distance to Skeleton
7 = -

F 0.05
’ .
l 0.00

/ 4 - ~0.05

Pearson r

Figure 60: Correlation between CAN activity and distance to the ranged predator.

Receptive Field of LSTM Neuron 457 from CAN Inputs
CAN O CAN 1 CAN 2

, 0.05
® -

—0.05

Correlation

Figure 61: Receptive field of neuron 457 from CAN input. The localized structure suggests selective sensitivity
to bump location.

This receptive field bears similarity to the correlation map with the predator’s distance, further hinting
at shared encoding structure. Despite being limited by fixed weights, the CANs in this setup show mild
task relevance and manageable dynamics—making this architecture a more interpretable baseline for future
comparisons.

Conclusion. In summary, the trainable nonlinearity variant failed to make effective use of the CANs, as
their activity was saturated at the limits of the tanh function, rendering them essentially inactive. The train-
able linear mapping may have captured some information about enemy position, but the velocity magnitudes
were far too large to encode meaningful information in a traditional sense. The fixed random mapping showed
more reasonable velocity scales and demonstrated some promise, particularly in encoding predator distance,
although it too struggled with expressiveness.

Overall, enabling the velocity signal to carry useful information remains a key challenge. One potential
solution is to introduce a more flexible transformation—such as an additional layer—between the LSTM and
the velocity output. This could help the agent represent richer information more clearly and potentially
improve task performance. Exploring such architectural modifications would be a valuable direction for
future work.

74

8 Conclusion

In this thesis, we investigated how architectural variations—namely path integration, connectivity sparsity,
and the inclusion of CANs — influence spatial reasoning, memory, and adaptive behavior in reinforcement
learning agents trained with clipped PPO. All agents successfully learned to navigate a dynamic environment,
locating food patches and evading predators. Among these factors, the inclusion of a path-integrating module
was the strongest predictor of high survival time, whereas sparsity had little effect on performance within
the path-integrating condition. This highlights the utility of sparse representations: they allow for efficient
computation while preserving or even enhancing functional capability, much like neural systems in biology.

Behavioral analyses revealed nuanced strategies shaped by internal state representations. Agents with path
integration ventured significantly farther from the origin, suggesting enhanced exploratory confidence enabled
by richer spatial encoding. Post-simulation statistics showed that the likelihood of revisiting a previously
visited food patch decreased with higher recent consumption (”eat-rate”) and shorter distance to the patch.
However, when positional uncertainty was high—i.e., when the agent had weaker internal confidence in its
location—it became more likely to return to familiar patches.

Sparse path-integrating agents exhibited the strongest positional awareness, achieving nearly the same pre-
dictive accuracy using only the top 10% most contributive neurons—demonstrating notable neural efficiency.
While these agents lacked a consistent encoding of relative position, there were indications that they re-
tained some memory of the direction they had come from. These findings reinforce the notion that targeted
connectivity and specialized neuronal subsets can support robust spatial representations with minimal com-
putational overhead.

We derived both numerical and analytical CAN models from mathematical first principles, ensuring bio-
logically plausible and stable bump dynamics. These models successfully produced structured grid-cell-like
activity, yet their incorporation into agent architectures had minimal effect on overall task performance. This
suggests current architectural pathways may not effectively leverage the CANs’ structured representations.
Interestingly, however, post hoc analysis revealed that CANs were not entirely ignored. In some configu-
rations, they correlated modestly with latent environmental variables—particularly the distance to ranged
predators—hinting at their potential to encode abstract “threat spaces.” In one architecture, specific LSTM
neurons even exhibited receptive fields aligned with localized bump activity, suggesting limited but targeted
use of CAN input. These findings point to promising directions for future work in designing architectures
that can more effectively harness CAN-driven representations.

75

9 Future Work

Although our initial findings are promising, several avenues remain for extending and refining this work:

Exploring More Advanced Architectures. The results suggest that feeding CAN outputs directly into
the LSTM layer may have introduced noise, potentially hindering learning. The LSTM appeared to allocate
its memory capacity selectively, often prioritizing other forms of task-relevant information over detailed
spatial encoding. Future research could explore alternative integration strategies—for instance, feeding CAN
representations directly into the actor-critic networks, either in parallel with or in place of the LSTM inputs.
Another promising direction would be to insert an intermediate processing layer between the CANs and the
LSTM. This layer could serve to refine or compress spatial signals, potentially making it easier for the LSTM
to store and utilize positional information effectively.

Developing a More Advanced Decoder. Thus far, position decoding has relied solely on a linear
model, which prioritizes interpretability but may overlook non-linear interactions within the network. Given
the observed correlations between CAN outputs and LSTM activity, it is possible that the LSTM encodes
spatial information in a more distributed or indirect manner—potentially through multi-layer transforma-
tions. Employing a non-linear decoder, such as a small feedforward neural network, could help uncover
whether positional information from the CANs is being utilized in a less direct fashion. While this approach
would sacrifice some interpretability, it could provide deeper insight into how spatial signals are integrated
and transformed within the agent’s architecture.

Numerical CANs Without Explicit Velocity Inputs. Thus far, the CANs have been driven exclu-
sively by velocity-based inputs, reflecting their traditional use for path integration. However, expanding
the connectivity to allow all-to-all input from upstream network layers presents a promising direction. This
would enable the CANs to respond to a broader range of signals, potentially encoding more abstract or
high-level variables. Indeed, we already observed that the CANs showed modest sensitivity to predator dis-
tance—suggesting they can represent more than physical location. With richer input connectivity, the CANs
could develop localized activity patterns based on environmental context, enabling more nuanced spatial or
semantic representations within their neural sheet.

Additional Decoding Objectives. While this thesis focused on decoding absolute and relative position,
other spatial variables may offer complementary insights. One promising avenue is the prediction of relative
angle or heading direction. This target is simpler and may reveal whether the agent maintains a sense of
orientation, even when its encoding of distance or displacement is limited. Exploring such signals could
help disentangle different components of spatial awareness and uncover latent structure in the hidden-state
representations.

In summary, the proposed research directions aim to deepen our understanding of how artificial agents
represent and leverage spatial information. By drawing inspiration from biological navigation systems and
exploring more refined architectures, decoders, and connectivity schemes, we can move toward models that
are not only more effective computationally but also more aligned with the principles of neural computation
observed in nature.

76

References

1]
2]

3]

© x

[10]

[16]

[17]

[18]

John O’Keefe and Lynn Nadel. The Hippocampus as a Cognitive Map. Oxford University Press, Oxford,
UK, 1978. ISBN 9780198572060.

Hamid R. Tizhoosh. Reinforcement learning based on actions and opposite actions. AIML Conference
Proceedings, 2005.

Xiaoyun Lei, Zhian Zhang, and Peifang Dong. Dynamic path planning of unknown environment based
on deep reinforcement learning. Journal of Robotics, 2018:Article ID 5781591, 2018. doi: 10.1155/2018/
5781591.

Maciej Grzelczak and Piotr Duch. Deep reinforcement learning algorithms for path planning domain in
grid-like environment. Applied Sciences, 11(23):11335, 2021. doi: 10.3390/app112311335.

Phone Thiha Kyaw, Aung Paing, Theint Theint Thu, Rajesh Elara Mohan, Anh Vu Le, and Prabakaran
Veerajagadheswar. Coverage path planning for decomposition reconfigurable grid-maps using deep re-
inforcement learning based travelling salesman problem. IEEE Access, 8:225945-225957, 2020. doi:
10.1109/ACCESS.2020.3045027.

YungMin SunWoo and WonChang Lee. Comparison of deep reinforcement learning algorithms: Path
search in grid world. In International Conference on FElectronics, Information, and Communication
(ICEIC), pages 20-21. IEEE, 2021. doi: 10.1109/ICEIC51217.2021.9369800.

Hamid R. Tizhoosh. Reinforcement learning based on actions and opposite actions. AIML Conference
Proceedings, 2005.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke. The microsoft 2017 conversational
speech recognition system. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5934-5938, 2018. doi: 10.1109/ICASSP.2018.8461870.

OpenAl, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub
Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor,
Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous in-hand manipu-
lation, 2019. URL https://arxiv.org/abs/1808.00177.

Maximilian Beck, Korbinian Poppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova, Michael
Kopp, Gilinter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended long short-
term memory, 2024. URL https://arxiv.org/abs/2405.04517,

Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I. Moser. Microstructure
of a spatial map in the entorhinal cortex. Nature, 436(7052):801-806, 2005. doi: 10.1038/nature03721.

Yoram Burak and Ila R. Fiete. Accurate path integration in continuous attractor network models of
grid cells. PLoS Computational Biology, 5(2):1000291, 2009. doi: 10.1371/journal.pcbi.1000291.

Bartdék Sagodi, Szabolcs Kali, and Ila R. Fiete. Robust grid-cell attractor dynamics in conductance-based
spiking neural networks. eLife, 13:eXXXXXX, 2024. In press.

Christopher J. Cueva and Xue-Xin Wei. Emergence of grid-like representations by training recurrent
neural networks to perform spatial localization. In Proc. International Conference on Learning Repre-
sentations (ICLR), 2018. URL https://openreview.net/forum?id=BkwzxnCIFX.

Andrea Banino, Caswell Barry, Piotr Mirowski, Charles Blundell, et al. Vector-based navigation using
grid-like representations in artificial agents. Nature, 557:429-433, 2018. doi: 10.1038/s41586-018-0102-6.

Benjamin Ellis Mikayel Samvelyan Matthew Jackson Samuel Coward Jakob Foerster Michael Matthews,
Michael Beukman. Craftax: A lightning-fast benchmark for open-ended reinforcement learning. 2, 2024.
URL https://arxiv.org/abs/2402.16801#.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. In International Conference on
Learning Representations (ICLR), 2022. URL https://openreview.net/forum?id=1w0z96MFEoH.

7

https://arxiv.org/abs/1808.00177
https://arxiv.org/abs/2405.04517
https://openreview.net/forum?id=BkwzxnC9FX
https://arxiv.org/abs/2402.16801#
https://openreview.net/forum?id=1W0z96MFEoH

[19] Felix Baastad Berg. Spatial representation in long short term memory for for- aging agents trained with
proximal policy optimization. TMA4500, 2025.

[20] Caron Lab. Mushroom body. The Caron Lab, n.d. URL https://www.thecaronlab.com/mushroombody.

[21] Glenn C. Turner and Joshua T. Vogelstein. A connectome of the drosophila central complex reveals
network heterogeneity. Nature Communications, 13:2022, 2022. doi: 10.1038/s41467-022-29613-5.

[22] Ryan Badman. Forageworld: Rl agents in complex foraging arenas de-
velop internal maps for navigation and planning. Seminar at Lyon Neuro-
science Research Centre, December 2024. URL https://www.crnl.fr/en/event/

seminaire-ryan-badman-forageworld-rl-agents—complex-foraging-arenas—-develop-internal-maps!

[23] Riley Simmons-Edler, Ryan P. Badman, Felix Baastad Berg, Raymond Chua, John J. Vastola, Joshua
Lunger, William Qian, and Kanaka Rajan. Deep rl needs deep behavior analysis: Exploring implicit
planning by model-free agents in open-ended environments. arXiv:2506.06981 [cs.AT], 2025.

[24] Anonymous. Policy iteration in rl: An illustration, 2023.

[25] Prafulla Dhariwal Alec Radford Oleg Klimov John Schulman, Filip Wolski. Proximal policy optimization
algorithmss. 2017. URL https://arxiv.org/pdf/1707.06347.

[26] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.
https://arxiv.org/pdf/1506.02438.

[27] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr Mirowski,
Alexander Pritzel, Martin J Chadwick, Thomas Degris, Joseph Modayil, Greg Wayne, Hubert Soyer,
Fabio Viola, Brian Zhang, Ross Goroshin, Neil Rabinowitz, Razvan Pascanu, Charlie Beattie, Stig
Petersen, Amir Sadik, Stephen Gaffney, Helen King, Koray Kavukcuoglu, Demis Hassabis, Raia Hadsell,
and Dharshan Kumaran. Vector-based navigation using grid-like representations in artificial agents.
Nature, 557(7705):429-433, 2018. doi: 10.1038/s41586-018-0102-6. URL https://pubmed.ncbi.nlm.
nih.gov/29743670/.

[28] John O’Keefe and Jonathan Dostrovsky. The hippocampus as a spatial map. preliminary evidence from
unit activity in the freely-moving rat. Brain Research, 34(1):171-175, 1971. doi: 10.1016,/0006-8993(71)
90358-1. URL https://www.sciencedirect.com/science/article/pii/0006899371903581,

[29] Edvard I. Moser, Emilio Kropff, and May-Britt Moser. Place cells, grid cells, and the brain’s spatial
representation system. Annual Review of Neuroscience, 31:69-89, 2008. doi: 10.1146/annurev.neuro.31.
061307.090723. URL https://pubmed.ncbi.nlm.nih.gov/18284371/\

[30] Kanstantsin Bohté and Peter J Kindermans. Grid-like coding increases the capacity of
continuous attractor networks. In Advances in Neural Information Processing Systems,
volume 26, 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/hash/

46c3b46£992f4e64c27b327e1f3e6f11-Abstract.html.

[31] Sarthak Chandra, Sugandha Sharma, Rishidev Chaudhuri, and Ila Fiete. Episodic and associa-
tive memory from spatial scaffolds in the hippocampus. Nature, 638:739-751, 2025. doi: 10.1038/
s41586-024-08392-y. URL https://www.nature.com/articles/s41586-024-08392-y.

[32] Benjamin Groh and Ila R Fiete. A grid cell code for ego-centric space. Journal of Neuroscience, 38
(40):8533-8540, 2018. doi: 10.1523/INEUROSCI.2277-17.2018. URL https://fietelab.mit.edu/
wp-content/uploads/2018/12/gridcell_jneurosci-1.pdfl

[33] Hanne Stensola, Tor Stensola, Trygve Solstad, Kristian Frgland, May-Britt Moser, and Edvard L
Moser. The entorhinal grid map is discretized. Nature, 492(7427):72-78, December 2012. doi:
10.1038/nature11649.

[34] Alexander Mathis, Andreas V. M. Herz, and Martin Stemmler. Optimal population codes for space:
Grid cells outperform place cells. Neural Computation, 24(9):2280-2317, September 2012. doi: 10.1162/
NECO_a_00319.

78

https://www.thecaronlab.com/mushroombody
https://www.crnl.fr/en/event/seminaire-ryan-badman-forageworld-rl-agents-complex-foraging-arenas-develop-internal-maps
https://www.crnl.fr/en/event/seminaire-ryan-badman-forageworld-rl-agents-complex-foraging-arenas-develop-internal-maps
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/1506.02438
https://pubmed.ncbi.nlm.nih.gov/29743670/
https://pubmed.ncbi.nlm.nih.gov/29743670/
https://www.sciencedirect.com/science/article/pii/0006899371903581
https://pubmed.ncbi.nlm.nih.gov/18284371/
https://proceedings.neurips.cc/paper_files/paper/2013/hash/46c3b46f992f4e64c27b327e1f3e6f11-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2013/hash/46c3b46f992f4e64c27b327e1f3e6f11-Abstract.html
https://www.nature.com/articles/s41586-024-08392-y
https://fietelab.mit.edu/wp-content/uploads/2018/12/gridcell_jneurosci-1.pdf
https://fietelab.mit.edu/wp-content/uploads/2018/12/gridcell_jneurosci-1.pdf

[35] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. 2016. URL https://arxiv.org/abs/1509.01240.

[36] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[37] Henrik Mouritsen. Long-distance navigation and magnetoreception in migratory animals. Nature, 558:
50-59, 2018. doi: 10.1038/s41586-018-0176-1.

79

https://arxiv.org/abs/1509.01240

A Appendix - Lyon Poster

Poster presented at the Lyon Neuroscience Research Centre.

80

Neural mechanisms of planning and memory in dynamic foraging agents

Ryan P. Badman* %2, Riley Simmons-Edler* 12, Felix Berg 2, Joshua Lunger 3, John Vastola !, Wi
!Neurobiology Department, Harvard Medical School; 2Kkempner Institute, Harvard University;

INTRODUCTION[*-41

We have little understanding of how biological spatial
navigation, planning, & memory work outside of
small, usually fully-observable arenas.

We don’t even know how standard deep RL agents do
navigation, despite 100s of ML benchmarks that
require memory and planning in 2D and 3D worlds.

GOAL: Use partially-observable, simulated foraging
arenas to develop methods and frameworks to
analyze continuous naturalistic data in neuroscience

RESEARCH QUESTIONS
Is simple memory and reinforcement
learning sufficient to navigate in large,

partially observable foraging arenas?

* Mammals and insects are known to keep track of relative
position and orientation (from an arbitrary starting point)
by integration of self-motion tracking and visual cues.
Here proximal policy optimization (PPO) and long short-
term memory (LSTM) are used for RL and memory.

If so, can high performance be maintained

for connectome-informed sparse networks?
* Neural networks in theory sub-fields are typically highly
connected, while real brains are sparse [5].

What are the neural circuits underlying
goal-oriented navigation, memory and

planning in large, complex spaces?
* Neural and behavioral logging during task performance
will allow GLMs and manifold studies.

NEURAL NETWORK ARCHITECTURE

We used a standard, state-of the art deep learning network architecture
for reinforcement learning (PPO) with recurrent memory (LSTM). PPO is
a policy gradient method that uses a value (advantage) function. LSTM
is a recurrent neural network that allows gating between recurrent
neural units and excels at learning multi-timescale relationships in tasks.
Episode Return
Ouputoads - — b

2FC layers sach
®2)

We were able to achieve
comparable performance
between highly sparse (90%
zero weights) vs highly
connected networks, and with
or without a path integration
obijective loss term.

7/ Kempner man
@ INSTITUTEp 3\‘
‘%‘\ UNIVERSITY OF HARVARD
w TORONTQ MEDICAL SCHOOL

Schematic of network
architecture used in our study.

FORAGING TASK DESIGN ¢

Partially observable
window the agent sees
(actual task screenshot)

Obstacles D

Agent with heading arrow

Obstacle

-
Predator

&

Predator Agsit

Task Description
We heavily modified the Craftax task [6] to be suitable for neuro research.
In each episode a new random arena is generated so the agent is never
overtrained on a given environmental configuration.
The agent’s goal is survival, i.e. to reduce its steadily increasing hunger,
thirst, and fatigue levels by eating, drinking, and sleeping as needed.
The input is a small 7 x 9 partially observable window, centered on the
agent as it moves around a 96 x 96 tile arena.
Food is cows which move around, water is provided by lakes, and sleep
locations must be chosen based on identifying areas with less predators.
During the task behavior and neural activity are logged at every time step.

BEHAVIOR RESULTS

Example arena episode

Behavior
- State2
° Statet
° State3

Foraging agents emergently learn to explore the full area, taking direct and strategic

routes to discovered patches in memory. Bayesian path segmentation is used to
identify movement states that are alternated between, analyzed below.

Exploration Distance

Histogram of distance traveled of|
agents that path-integrate vs not

Path Integration

Exploration distance vs.
path integration error

Frequency

%560 1000 1500 2600 2500 3000
me (step) R =
Distance from Session Origin
! Agents trained to path-integrate
it Efdfern performan.ce, but explore farther than those not trained
can predict their position with to, despite overall performance being
about 5-tile precision overall, et

Agents are found to often revisit
the origin to restore path

Variables driving movement
state transitions

Patch-revisiting choice GLM

Factors that influence patch
isitation choice

Hunger Ia of Cows|
Level history
-

Predator irie In
rate
Spatial
- I uncertainty

Distance Inverse
recency
\Deplelian history
Voriable Category for Chosen Patch Relative o
Multi-goal optimization emerges in
agents. One of the goals is revisiting
patches where uncertainty was higher.

food
ener
incedainty

is_patch
ndm_passives_nearby

enerny_present
Reai

forage.

Short-, mid-, and long-range
movement patterns are modulated
by a combination of task variables.
Factors in the plot are unsigned

Standardized GLM coefficient values

decision tree importance scores.

m Qian 2, Kanaka Rajan 12

mputer Science Department, University of Toronto * equal contributions

MODEL-GENERATED NEURAL ACTIVITY RESULTS

Recurrent activity is generated
by 512 RNN (LSTM) units that
are connected to the RL layers.
All weights in the network are
trainable. Neural activity is read
out at every time step.

Manifold Analysis of Exploration Phase Transitions

—— cumulative # tiles explored
— population variance

Fraction of arena explored

Time Step

Virtual foragers transition behaviorally from rotating exploration bursts from
the origin, to wider loops through discovered patches. We see neural
transitions as well in population variance and PCA space.

Example episode start Middle third Last third of episode

Decoding analysis for navigational planning & memory

Decoder AMSE
Decoder RMSE

—10% —10? -10' -10°010° 10° 10¢ 10°
Bt of prediction
-~ Pl Avg Displacement

~10% —jo? —io! -1090 10° 10" 10¢ 10°
at of prediction

— Pathint(P) —— No Path Int (nPI) Pl Avg Displacement

Path integrating agents have improved decoding performance for predicting
past and future positions from the LSTM recurrent neurons. The planning
and memory time horizons are on the order of 100s of time steps,

CONCLUSIONS & NEXT STEPS

Virtual foraging agents, trained with standard RL and memory
architectures, performed well in large foraging arenas.

In each new random arena, agents switched from early exploration
phases to strategic and direct revisitation of patches in memory.

Agents could be trained to predict their distance from an episode’s
origin, which also allowed a readout of the agent’s spatial uncertainty at
each time step.

Furthermore, agents could be trained with brain-like sparsity, with 90%
of the network weights zeroed, without losing task performance.

Being trained to also path-integrate led to farther exploration and more
decodable neural signals of planning and memory.

Next steps include finishing current analyses, and exploring grid cell-
augmented RNN architectures to better connect to mammalian studies.

REFERENCES

[1] Wolbers, T. Et al. “Challenges for identifying the neural mechanisms that support spatial
navigation: the impact of spatial scale." Fron in human neuroscience 8 (2014): 571

[2] Wen, John H., et al. "One-shot entorhinal maps enable flexible navigation in novel
environments." Nature (2024): 1

[3] Wehner, R. “Searching behaviour of desert ants, genus Cataglyphis (Formicidae,
Hymenoptera).” Journal of comparative physiology 142 (1981): 315-338.

[4] Osborne, Juliet L, et al. "The ontogeny of bumblebee flight trajectories: from naive explorers
to experienced foragers." Plos one 8.11 (2013): e78681.

[5] Broido, Anna D., and Aaron Clauset. "Scale-free networks are rare." Nature communications
10.1 (2019): 1017

[6] Matthews, Michael, et al. "Craftax: A Lightning-Fast Benchmark for Open-Ended
Reinforcement Learning." arXiv preprint arXiv:2402.16801 (2024).

B Appendix - Lyon talk

Seminar held by Ryan Badman 17th December at the Lyon Neuroscience Research Centre.

82

ForageWorld: RL agents in complex
foraging arenas develop internal
maps for navigation and planning

Ryan Badman, PhD
Research Associate
Harvard Medical School & Kempner Institute
17/12/2024

7)) Kempner @rarare

‘orvard Unversity

e Leonard and Isabelle Goldenson Fellowship i*

o Lefler Neurodegeneration Grant 1,0 _
Croftox

Space and Memory: two big knowledge gaps in neuroscience

e Space: Most real-world decisions occur in large partially-observable spaces
(physical or conceptual). Most neuroscience lab tasks do not.

e Memory: We have poor understanding of long-term memory structure and
recall.

e Good future planning requires accurate space-feature maps and recall. Neuro
models and Al/ML models are both bad at this.

@ DeepMind

Open-Ended Learning Leads to Generally
Capable Agents

Open-Ended Learning Team*, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob Bauer, Jakub Sygnowski, Maja
Trebacz, Max Jaderberg, Michael Mathieu, Nat McAleese, Nathalie Bradley-Schmieg, Nathaniel Wong, Nicolas Porcel, Roberta
Raileanu, Steph Hughes-Fitt, Valentin Dalibard and Wojciech Marian Czarnecki

DeepMind, London, UK

A parallel push in computer science towards “open-ended” exploration
tasks to discover more intelligent reinforcement learning computations.

Give a very general end-goal, but the agent needs to create and
accomplish its own chain of subgoals to reach the end-goal.

Deep learning networks are smaller but comparable to
insect brain sizes

Growing recognition that individual insects have rich
behavioral dynamics (in addition to collective intelligence)

COSYNE 2024
Keynote

Ryan Badman Riley Simmons-Edler Felix Berg John Vastola
Kempner/HMS Kempner/HMS MIT/NTNU HMS
g i

AR
- - .
William Qian

N i
Joshua Lunger
U. Toronto Kempner/Harvard Kempner/HMS

Kanaka Rajan

Beyond Trial-Based Paradigms: Continuous Behavior,
Ongoing Neural Activity, and Natural Stimuli

‘Alexander Huk, >3 ©Kathryn Bonnen,'? and ©Biyu J. He*

il | o acas | Pbdec: 05 arch 2024 Keep it real: rethinking the primacy of
f"p“'.at“i’:fcr‘;gl';'g of strategicvariables during experimental control in cognitive

d B
Neda Shahidi, Melissa Franch, Arun Parajuli, Paul Schrater, Anthony Wright, Xaq Pitkow & & Valentin neuroscience

Samuel A. Nastase ® 2, &, Ariel Goldstein °, Uri Hasson ®

© 27, 772-781 (2024) | Cite this article

> Behav Neurosci. 2021 Oct;135(5):601-609. doi: 10.1037/bne0000471. Epub 2021 Jun 7.

The primacy of behavioral research for
understanding the brain

Yael Niv

Emphasis on more continuous and/or naturalistic neuroscience
tasks, but are our analysis frameworks ready for it?

More complex simulated worlds are important to
develop methods and frameworks to analyze
naturalistic data in neuroscience

e We have little understanding of how spatial navigation, planning & memory
work (outside of small, fully-observable arenas) in animals or insects.

e We don’t know how standard deep RL agents do navigation, despite 100s of
ML benchmarks that require memory and planning in 2D & 3D worlds.

e More complex data needs more statistics to analyze properly — simulation

e Here, we combine the strengths of ML simulations with the depth of
neuroscience analyses to prepare for the naturalistic future of our field.

Wolbers, Thomas, and Jan M. Wiener. "Cl for identifying the neural
scale." Frontiers in human neuroscience 8 (2014): 571.

that support spatial navigation: the impact of spatial

Example 1: Desert ants’ spatial memory and strategy

e |f a homing ant (Cataglyphis bicolor,C. albicans) gets lost, it does not perform a random
walk but adopts a stereotyped search strategy.

e During its search the ant performs a number of loops of ever-increasing size, starting
and ending at the origin and pointing at different azimuthal directions.

e After one hour of continuous search the ant's search paths cover an area of about 104
m?, precisely centred around the origin.

Wehner, Ridiger, and Mandyam V. Srinivasan. "Searching |
behaviour of desert ants, genus Cataglyphis (Formicidae, il
" Journal of i i 142 (1981):

315-338.

Evidence of using latent spatial learning (unreinforced?) &

learning a new path after one experience in rewind task

=N

Repetiton

»
A

Si;\uosity index

Clement, Leo, et al.. "Latent learning without map-like representation of space in navigating ants." bioRxiv (2024): 2024-08.

Other animals/species: Huge diversity in foraging path
patterns, what drives them?

9 o § 5

Winter territory

o

o o
o w6 @ ow I “ o
Succession of mots .

Network motis

—
EEED

Main territory

() -~ ¢
P Roaming area &

2 3 3

i e In 3
~d -~ ﬁ ~5) "

: w‘ .JU . }\ “e }a

L &
; el %, %

Succession of moiifs ¢ '
Pasquaretta, Cristian, et al. "Analysis of temporal patterns in animal movement networks." Methods in Ecology and Evolution 12.1 (2021): 101-113.

Task Design (new procedurally generated arena each session)

Partially observable 96 x 96 Grid-based Foraging Arena

window the agent sees Patch
(actual task screenshot)

Obstacles D
Obstacle

Agent with heading arrow o ; ?

Food

'4

Predator

Agent
GOALS fé

Output heads: 2xFC layers each
[—] (512 neurons)

VISION SYSTEM

@

Input

FC layer

(512 neurons) ——— Value

—>Policy

Agent
Position
Model
Architecture — Path Integration

Reinforcement Learning

Example 2: Bees make progressively bigger, rotating loops from
center hive with experience

¥—X Individual flight tracks from colony
—— Field boundaries
=== Hedgerows and wooded area

[Patches of crops or flowering plants
| Tall maize crop
[Buildings

Osborne, Juliet L., et al. "The ontogeny of bumblebee flight trajectories: from naive explorers to experienced foragers." Plos one 8.11 (2013):
e78681.

High level questions about exploration and its drivers

e What exactly is exploration?

o In neuroscience, “exploration” is often very overtrained agents in simple binary choice tasks picking a
different option than in the previous trial.
o Can we embed exploration in more interesting conceptual or spatial maps?

e What factors drive exploration in more naturalistic settings?

o Predators or other dynamic risk pressures perturbing agent paths?
o Minimizing uncertainty or path integration errors?
o Exploration being optimal for some reward versus energy or risk tradeoffs?
e Current RL agents in computer sciences are bad at harder exploration tasks, can a
better theory of exploration in neuroscience help this bottleneck for both fields?

Matthews, Michael, et al. "Craftax: A Lightning-Fast
(2024).

for Open-Ended Leaming." arXiv preprint arXiv:2402.16801

OPEN-ENDED GOAL: SURVIVE!! . .
Behavior question:
How does the agent
learn to perform well
in each sub-goal, and
which combination of
strategy-switching
leads to the longest
survival times in the
foraging task?

Rest and (maybe)
lid

Info-seeking / exploration memo

"

‘/W/

Predator avoidance

/\f

Social needs I learning

Future work

Episode Return

Path integration and biological
sparsity?
Main conditions tested

Sparsity = Baseline = Pathint
— Sparsity-Pathint

20000 £ Sparse Non Sparse
2 | |
Q
15000 o2 Path Int. (1,1) (1,0)
No Path Int. i(o, 1) (0,0)
10000
We can train up to 90%
5000 sparse networks with no

performance loss,

Training Epochs connectome-like sparsity [1]

10k 20k 30k 40k

[1] Broido, Anna D., and Aaron Clauset. "Scale-free networks are rare." Nature communications 10.1 (2019): 1017.

Agent trajectories look bee-like at the start (sort of) Example paths of one episode split into thirds

65003.000000 ‘ id2
Example arena trajectory “ “
O Patches -~ ”'{ o]
© wd
£
E al 4 o Behavior
s & T T T E
O * NA
> Transition from exploration to
revisitation
» Axes scale is full arena size Efficient, direct routes are planned

pa 5 s = R | 3 to revisit patches from memory

"X Coordinate : % 0 % o
Behavior and neural state transition from exploration, to equilibrium Foraging action-labeled arena example

revisitation strategy, modulates neural population variance
'l

1.0

0.8

0.6 1

0.4 1

0.2 1

= cumulative # tiles explored °
564 —— population variance 0 2 20 60 80
0 5000 10000 15000 20000 Drink, eat, predator visible, movement path

Timestep in a session

Examining exploration drivers Predators enhance Predicted versus actual distance from origin: path
exploration integration works well in our agents.
Distance from origin histogram Gives us a spatial uncertainty readout at every timestep.
porssemll c l\ =
4000 Start doors Mouse nd doors
s [U ? i °
Water reward _ir pu"‘ Water reward »
53000 robot -U
2 I > . 2
Q ther path diversity Peeking Baiting T
g.zooo N\ -_a & e
(4] \ J
£ A Ay 2
1000 m
See Lai et al, 2024, Cell Reports, for
7 5. 10 15 20 _25 30 3 related lab experiments in mice : 60
Distance from origin
Actual x
Explicitly path integrating agents explore farther Exploration distance vs.
path integration error
Histogram of distance traveled of 20.0 70 Agents partly
agents that path-integrate vs not =175 return to
o 17 60 S . .
saseline E =) origin to
30000 Path-Int ué 15.0 50 5 restore path
o o 2125 40 E integration
5 20000 C 100 = performance
= g 7.5 -
GISDOG E P =
D 1o < 5.0 20 ©
[2 2
5000 n 2.5 100
0 0.0

0 '
0 500 1000 1500 2000 2500 3000 Remember bees

0 10 20 30 40 50 60
Distance from Session Origin 4
time (step) and ants!

Decoding analysis of navigational planning and memory:

e Path integration improves decoding performance

e Planning and memory time horizons on order of 100s of time steps
RMSE of Predicted Position at Relative Timestep At

--- Average Displacement
= Prediction Error
95% CI

3

&

8

i
»

-10° -10' 0 10' 10°
At steps into past and future

Root Mean Squared Error (RMSE)
8

S

Importantly we find ~10-20 different arena configurations are needed to decode position,
rather than time or visual artifacts

Neural manifold analysis of movement states
PCA

PC1 (‘ *\

Short, mid and long range motion cycles with D,
session-level drift

Factors that influence patch
revisitation choice

Multi-goal optimization
emerges in agents.

One of the unexpected
goals is revisiting
patches where
uncertainty was higher

-2

-4

Standardized GLM coefficient values

. Spatial
4 uncertainty
-8 Distance Inverse
-10 recenc
" oo o Y
5 Depletion history

EatRate DrinkRate PredRate Hunger Distance Recency Dwelltime Cows Uncertainty

Variable Category for Chosen Patch Relative to Non-chosen

Conclusions

e Simple agents with orders of magnitudes fewer “neurons” than insects can
learn complex world maps without any hard-coded world map architectures.

o A major challenge for the field is to reconcile neural network-based
models with equation-based models.

e Insects have very sophisticated spatial memory that mix features and space.
Our models suggest small RL-RNN circuits can support such computations.

e High biologically-relevant sparsity can be achieved in hard tasks without
performance loss, makes encoding profiles more brain-like and decodable.

We will continue to do a detailed neuro-style study of which navigational rules
DRL agents learn and represent in their activations.

47565

100

Behavior
* State2

© State3
° NA

Bayesian path
segmentation based
on turning angle and
- s Step size

‘ _— —
- _-— I — -—
- == [|

- .

Standardized GLM coefficient values

25 50 75 100

Ea

Bin

Decision tree importance scoring (not signed) for

factors that differentiate states

food
ener
unce?'{ainty o
drink o
is_patch o
num_passives_nearby o
enemy_present o
health o

forage o

0.00 0.10

Factors that influence patch
revisitation choice

Hunger
level history
&

Water
nearby
Y

»

Timein

- Predator
- rate patch
Spatial

-~

Distance

Inverse
recency

. T
Depletion history

of Cows

uncertainty

EatRate DrinkRate PredRate Hunger Distance Recency Dwelitime Cows Uncertainty

0.20

Multi-goal optimization
emerges in agents.

One of the goals is
revisiting patches
where uncertainty was
higher

Variable Category for Chosen Patch Relative to Non-chosen

Next steps

e Grid cell augmented RNNs for link to mammalian work

e disRNNs for more interpretable latent states

e Flesh out current results

> Nature. 2018 May;557(7705):429-433. doi: 10.1038/541586-018-0102-6. Epub 2018 May 9.

Vector-based navigation using grid-like
representations in artificial agents

Contradictory Resuts & Follow this preprint

When and why grid cells appear o not in trained path integrators.
© Ben Sorscher, © Gabriel C. Mel, © Aran Nayebi, @ Lisa Giocomo, © Danel Yamins,

© suya Gangui
doi: hitps:/doi.org/10.1101/2022.11.14.516537

And several other grid cell
RNN examples

Other Collaborators

Social Neuroscience (human fMRI) Military Al Ethics & Policy

o Wojciech Zajkowski (NIH) e Riley Simmons-Edler (Harvard)
e Masahiko Haruno (NICT) e Jean Dong (Harvard, Kennedy School)
e ReiAkaishi (RIKEN) e Shayne Longpre (MIT)

-Zajkowski*, Badman* et al. 2024 e e Paul Lushenko (US Army, Cornell)

e Ahmed Mehdi Inane (Mila)

Computational Chemistry -Simmons-Edler’, Badman* et al. 2024 _gas
e Zizhang Chen (Brandeis)
e Pengyu Hong (Brandeis) i

-Chen*, Badman* et al. 2024

-multiple policy projects in 2025

Information Seeking

Various ongoing mouse work e Jen Bussell
e Siyan Zhou (Harvard) e Richard Axel
e Christopher Harvey (Harvard) e Larry Abbott
e Shijia Liu (Harvard) e Ethan Martin-Bromberg
e Bernardo Sabatini (Harvard) ma e Christian Marton ghiy
e Yu Duan (Harvard) w¥e -Bussell, Badman et al 2024. e d

Example LSTM Neural Traces

1.0

Aoy HWM

Neural Activity
0.0 05

s T T T T T
0 1000 2000 3000 4000 5000
Session Time

Sparsity and path integration independently improve selective encoding of
past/future positions

B Displacement from origin 2 Relative displacement from current position
W _ 4] |ccsscessposesaccsheccessesadeesades: w
u 101} v 101!
= T2} z 10}
o< o« |
ol i
Q Q 1
° ‘ ° |
o o
1 @ 100/
o | @™
100: J |
-10° -107 —-10' -1090 10° 10' 102 10° -10° -10 —-10' -10°0 10° 10' 107 10°
At of prediction At of prediction
—— PathInt(Pl) —— No PathInt(nPl) - Pl Avg Displacement - nPl Avg Displacement

2l}MSE of Predicted Postion Trained on Varying Number of Episodes

20
—— 1 episode
15 —— 3 episodes
—— 6 episodes
13 episodes

]

=== Average Displacement

W

Root Mean Squared Error (RMSE)

0
-10° -10° -10' -10" 0 10’ 10
At steps into past and future

Questions?

Sparse networks have localized encoding. GLM will explore more soon.

Highest Coefficient-Contribution to Variance in Prediction

1%

— g0
. 10%
&b
£
2
g

5

-107 -100 0 10 10°

Contribution of individual neurons in Models with different future timestep prediction

120

PI-1%

nPI-1% /

100{ — Sparse PI-1% . |
o \

Nl

|

60

Contribution (top 1%)
o]
o

N
=]

C Appendix - COSYNE 2025 Abstract

Abstract submitted to the COSYNE 2025 seminar.

88

ForageWorld: RL agents in complex foraging arenas develop internal maps for navigation and
planning

Summary: Foraging, the set of behaviors associated with seeking valuable resources (e.g., food,
water) while avoiding danger (e.g., predators), is ubiquitous among organisms, but its neural circuit
basis is presently unclear. Most existing work on navigation, a key component of foraging, involves
animals in small, fully observable arenas with few-to-no obstacles, partly because recording neural
activity in naturalistic settings is challenging. How do animals successfully forage in complex
naturalistic environments, especially given realistic neural circuit constraints on capacity and
connectivity? To study this question in tractable settings, we designed ForageWorld, a
procedurally-generated and partially observable arena-based environment, in which artificial agents
must satisfy hunger, thirst, and sleep requirements while navigating complex terrain and avoiding
predators. We found that agents trained via reinforcement learning (RL) explored the arenas to locate
resource-rich patches, and strategically traveled directly between known patches outside the current
field-of-view, including ones unobserved for hundreds of timesteps. Moreover, this sophisticated
navigational planning was achieved by agents with fewer neurons than insect brains and with sparse
connectivity constraints. To analyze these foraging behaviors, we used generalized linear models
(GLMs) to quantify how patch features (e.g., distance from agent, historical predator rates, depletion
tracking) influence patch revisitation decisions, Bayesian path segmentation to characterize agent
behaviors on different timescales, and neural decoding analyses to probe the circuit basis of
navigational mapping. Since path integration is thought to be foundational for navigation, we
compared agents explicitly trained on path integration to agents that were not. Path-integrating
agents explored more of the environment, and in a manner modulated by spatial uncertainty. They
also had clearer neural representations of past and future locations, pointing to the emergence of
internal maps. Our results pinpoint biologically plausible foraging strategies implemented by neural
circuits in navigating organisms with small brains, such as bees and ants.

Additional Detail: Mounting evidence shows that we have underestimated the sophistication with
which animals can learn and memorize spatial maps without direct reinforcement [1-3]. Interestingly,
deep RL (DRL) neural networks now approach the size and computational sophistication of insect
brains [4], but the spatial navigation and planning strategies that DRL agents use in solving
exploration-related tasks is almost completely unknown. Deeper analysis into DRL agents can also
help infer computational abilities of biological brains with similar size and constraints (e.g. insects).

We built a modular and user-friendly foraging task suite to solve this knowledge gap, where
parameters related to patchiness, predator behavior, resource depletion and replenishment rates, etc.
can be customized (Fig. 1). Trained agents demonstrate complex insect-like path-finding,
path-integration, and strategic path-revisitation behaviors (Fig. 1, 2). Furthermore, path integration as
an objective seems to drive exploration in part (Fig. 1BDE), with agents explicitly using path
integration exploring farther. Path integration-linked exploration also increases the decodability of
neural representations of spatial memory and planning over longer timescales which suggests the
emergence of latent cognitive maps (Fig 2B). Last, most current neuroAl architectures use highly
connected networks that suppress brain-like localized selective encoding and modularity that may
emerge from biophysical constraints such as sparsity. Thus, we use connectome-informed sparse
networks (90% sparsity) that can nonetheless forage effectively in our task (Fig 2A). Ongoing
analysis is now focused on comparing single-neuron encoding profiles of foraging-relevant variables
between sparse networks and non-sparse networks, so that our foraging simulations can be honed to
have improved bio-relevance to brain data in a larger range of species.

References: [1] L. Clement, S. Schwarz, and A. Wystrach, bioRxiv (2024).; [2] M. Freire, A. Bollig, and M. Knaden, Curr.
Biol. 33, 2802 (2023).; [3] J. H. Wen, ... L. M. Giocomo, Nature 1 (2024).; [4] G. C. H. E. de Croon, ... J. A. R. Marshall,

Sci. Robot. 7, eabl6334 (2022).; [5] M. Matthews, ... J. Foerster, https://arxiv.org/abs/2402.16801v2.; [6] J. Schulman, F.,
...O. Klimoyv, arXiv:1707.06347.

A Partially observable 96 x 96 Grid-based Foraging Arena Histogram of distance traveled of
agents that path-integrate vs not

Baseline
PatheInt

window the agent sees
(actual task screenshot)

Obstacles D

Agent with heading arrow

Obstacle

= o
Predator E 10000
L

Agent °

0 10 20 30 40 S0, 60
Distance from Session Origin

-/

C D Exploration distance vs. E Factors that influence patch
path integration error % .| wate, FeVvisitation choice
v =l fC
20.0 Hunger # of Cows
S nearby
5 17.5 = _ level hlstory
Q. = ﬁ k=) @ * —t—
= @ 15.0 M S
@© : I f 505 g
P c TR Ti
= g12s H \'I\ Y wE 8 Predator |me in
51 B 100 Jiy M e 5+ o "a“’“
8 g 5 \ ‘ | ‘r1| 30 o g . Spatial
- = ‘o f’ AN . | M1 E g uncertainty
: s = ‘ \ B Dlstance Inverse
& 25| | e 5, recency
.« Axes scale is full arena size : 0 &
‘ - 4 . 1 %°907"560 1000 1500 2000 2500 3000 Aot Deplem" history e o e
2 0 . 5 time (ste Vanab\e Category fur Chnsen Patch Relatwe to Nun chose
"X Coordinate’ (step)

Figure 1, Task design and agent behavior: (A) A schematic of one full foraging environment that is procedurally
generated with a new random seed each episode in JAX (right). This novel task suite is substantially modified from the
Craftax framework [5] and only requires agents to survive as long as possible by avoiding excessive hunger, thirst,
predators, and fatigue. The left insert shows an actual screenshot of what the input task screen “looks” like to an agent
with its partial observation window (9 x 7 tiles), which is a fraction of the full arena size (96 x 96 tiles). (B) Our DRL agents
are trained with proximal policy optimization (PPO) [6] connected to an LSTM (512 neurons) with a feedforward input
encoder and output heads (7000 units total) [5]. We train with and without an auxiliary objective to predict current
displacement from the episode’s origin (the origin is randomly selected for each new episode), in addition to the RL
objective. Agents that explicitly learn path integration explore longer distances than agents without. (C) Example trajectory
of an agent in an example arena, with the origin randomly selected near the center in this trial, and the agent doing
explorative loops that return to origin. Annotated segmentation pipelines identify behavioral states such as patch visitation
(yellow circles), long range directed motion (green points) and a mixture of area-restricted search and predator avoidance
(purple points) (D) Plots showing that path integration error worsens with distance from origin in path-integrating agents,
but performance is restored after returning to origin. (E) Standardized GLM coefficients of patch history variables that an
agent uses to decide which patch to revisit in its network of discovered patches. Agents consider multiple significant (red)
factors at once, with expected factors such as patch depletion histories and nearness of patches, but also unexpected
factors including preferring patches where path integration errors were higher historically (perhaps to reduce uncertainty).

Episode Return
A T Basenne — Rathing B) Displacement from origin) Relative displacement from current position

20000 _5_ J W o1l 2ol
& i g | g |
15000 e o |
A [7] T |
i A b= °© 1

‘ g g
10000 o]
| o
2 "JH 10° -

5000

e ""’ ‘) -10* -10? -10' -10°0 10° 10t 10¢ 10° -10° -10% =10 -10°0 10° 10! 10?2 10°
Training Epochs At of prediction At of prediction
10k 20k 30k 40k —— Path Int (Pl) —— No Path Int (nPI} ------ Pl Avg Displacement — ----- nPl Avg Displacement

Figure 2, Task learning curve and decoding of navigational variables from recurrent neural network activity: (A)
Comparable training performance is shown between agents with 90% sparse versus non-sparse networks, and with and
without the path integration objective. (B) Solid lines show decoding performance of past and future displacements from
the origin (left) and from the agent’s current position (right), for agents that have an explicit path integration objective (solid
blue) versus those that do not (solid red). Dotted lines show the baseline average displacement within a given time
window for comparison, with the path-integrating agent exploring farther. Allocentric representations are clearer (easier to
decode) in explicitly path integrating agents (solid blue, left), but results suggest that non-path integrating agents also
develop an emergent, but noisier, latent path-integrating ability or “internal map” (solid red, left), Plots are on a log-log
scale to show the slower time-scale emergent planning and memorization horizons more clearly (+/- 30 to 40 timesteps).

	Introduction
	Related work
	Contributions
	Relation to the TMA4500 Project Report
	Acknowledgements
	Structure of the thesis
	Contribution to Sustainability

	I Designing and Simulating the Reinforcement Learning System
	Foundations of Reinforcement Learning and Proximal Policy Optimization
	Markov Decision Process
	Partially Observable MDPs

	Policy
	Long Short Term Memory (LSTM)

	Defining the RL objective
	Policy Gradient Methods
	PG with learned baseline
	Trust Region Formulation
	Importance sampling
	Proximal Policy Optimization (PPO)
	General Advantage Estimator (GAE)

	Grid Cells and Continuous Attractor Networks
	Introduction to Grid Cells
	Continuous Attractor Networks
	RC Circuit Model of Neuron
	Firing Rate Model
	Neural Network Model

	Defining the neural grid
	Direction preference and Velocity Field W
	Distance on the Neural Sheet
	Grid Norm
	Asymmetry in Distance Function

	Determine the Recurrent Matrix M
	Stability Analysis of the Equation
	Stability of Eigenvalues
	Eigenmodes

	Parameters
	Implementation
	Analytical Implementation for Computational Efficiency

	Environment and Model Implementation
	States (Environment)
	Actions and dynamics
	Reward
	Policy Architecture
	Loss functions
	Value loss
	Entropy loss
	Auxiliary loss
	Total loss

	Implementation
	Algorithm
	Implementation in JAX
	FAS Research Computing Clusters
	Parameters

	Experiments
	Early training
	Comparing architectures

	II Statistical Analysis of Space Representation
	Theory — Memory Analysis
	General Linear Models
	Decoding Spatial Representations from Hidden States
	Single Neuron Decoding Theory
	Decoding Grid Cells
	Architecture 1
	Architecture 2

	Results — Memory Analysis
	Behavioural Decision GLM
	Neural decoding — Correction for Model Biases
	Problems with Normal Ridge Regression on an Episode
	Problems with Continuous, Temporal Auto-Correlated Data
	Addressing the Feature Space Problem: Training on Multiple Episodes
	Addressing the Output Space Problem: Temporal–Chronological Split in Train and Test Data

	Neural Decoding — Spatial Representation Results
	Comparing RMSE Relative to Origin
	Relative RMSE
	Spatial Representations Across Training
	RMSE with CANs
	Summary of Encoding Findings

	Single Neuron Decoding
	Contribution Distributions
	Top Contributions Comparison
	RMSE after Removing Top Contributing Neurons
	Coefficient Profiles

	Grid Cells — Results
	Architecture 1
	Architecture 2

	Conclusion
	Future Work
	Appendix - Lyon Poster
	Appendix - Lyon talk
	Appendix - COSYNE 2025 Abstract

