
Unsupervised Time Series Forecasting with Spiking Neural Networks leveraging Spike
Time Dependent Plasticity

F. B. Berg
Department of Electrical Engeneering and Computer Science, MIT

Summary

This paper looks into the potential of Spiking Neural Networks (SNN) and Spike Time Dependent Plasticity (STDP)
used for 1-step ahead time series forecasting. Specifically focusing on using this unsupervised learning method to predict
stationary data based on five previous data-points, a challenging task due to the large overlaps in clusters in the input-
space of the network. The study explores weather STDP can be effectively applied to time series forecasting, a domain
traditionally being dominated by supervised methods. The performance of the SNN is evaluated based on MSE and
compared with AR(5) for reference. The results indicate that SNN do not match the precicion of traditional methods, but
may hold promise for certain kind of boolean forecasting-related queries. The findings also underscore the importance of
network architecture, biological parameters and ratio between number of neurons and training data. In the discussion we
also look at receptive fields as the biological understanding of the synaptic weights, and why neural networks imitating
biological structures are beneficial.

1. Introduction

1.1. Background - Time Series
The 1-step ahead forecaster in time series prediction is de-
noted as X̂T+1(XT−p:T) indicating that it uses the values
{XT−p, ..., XT } to predict the true value XT+1. The goal
of a forecaster is to minimize the absolute error

eT+1 = |XT+1 − X̂T+1(XT−p:T)|.

X̂T+1(XT−p:T) is an unknown function (let us call it g)
where the realized Xi are the parameters.

A natural method to find a good g is to use neural net-
works. With ANN we can use back-propagation to adjust
the weights of the system. This supervised learning strat-
egy will over time minimize the error with training.

1.2. Background - Computational Neuroscience
One of the aspects that separates artificial neural network
from the networks of the brain is the the activation func-
tions are continuous in ANN. This allows back-propagation
to exploit the gradient which in return allows for changes
in the weights that will minimize the error.

In biology, the information is passed along synapses in
discrete manners with action potentials. The neural net-
work that imitates this behaviour is called Spiking Neu-
ral Networks (SNN). The strengthening and weakening of
synaptic strength follows the principle of "firing together,
wiring together". This is a completely different learning
method called Spike Time Dependent Plasticity (STDP).

1.3. Problem Formulation & Motivation
In this paper I will use SNN and STDP as an 1-step ahead
predictor for stationary data. The goal is to see weather
we can use STDP as a learning rule for time series forecast-
ing. This is also the motivation for using SNN, as STDP
is unsupervised and it is not trivial that it will be able to
create reasonable predictions.

Another motivation for choosing SNN is that computa-
tional neuroscience is an interesting field, and spiking neu-
ral networks are more relevant than ever with recent devel-
opement in neuromorphic computing [1]. In recent times
there has been demonstrated that neuromorphic models in
some cases have better performance and response in com-
parison to traditional machine learning methods. Neu-
romorphic computing is also relevant for brain computer
interfaces, which is promising as a tratment to many neu-
rological diseases.

2. Data

The data for this paper is daily temperature in Madrid
over several years. The data is de-trended to remove the
seasonality. From the data we create both the input and
the output of the neural network. Assume the data is on
the form [X1, X2, X3, ...]

T , then the structure of the data
used for the neural nets are

x =
[
X1:5 X2:6 X3:7 . . .

]
→ y =

[
X6 X7 X8 . . .

]
The first 80% of the data is used as training data while the
rest is used for testing. The detrended data is also scaled

Preprint submitted to 18.0651 Matrix Methods September 10, 2025

so that the magnitude of the points are the firing rate of
the neural network.

I also created bins for the data in y. As mentioned,

Figure 1: Traceplot of the original data, and the scaled de-
trended data

we will solve this problem unsupervised so the methods
consists of clustering similar x data to the same value of
y. We can use a PCA plot to visualize the clusters of input
data and their respective bin.

2.1. Selecting bins
There are two intuitive ways of selective the bin sizes for
for the y values. The first one is equidistant meaning that
we select the bin in a

y_bini = ⌊yi · k⌋

This will cause the input data x to be somewhat normally
distributed in the bins.

The other method is to use a percentile method for choos-
ing the ranges of the bin. This makes the bins for the
upper and lower values of y much larger as there are fewer
values here. Below we have the PCA of the two bin sizes
for 10 bins.
We can also conclude from the data that there exists clus-
ters, but that they have large overlaps. The proportion
of the total variance explained by the first component is
71,7% and the second is 16,0%. This implies that the
variance in the PCA greatly captures the real variance.
Therefore, clusters in the PCA will approximately be the
clusters in five-dimensional space.

For the results and training in later stages we will use the
PCA with equidistant bins. This gave much better results.
The reason I think the result were that much better is due
to the big overlap in the percentile bins. We see from the
PCA Percentile plot that the yellow points reach far into
the center of the data. This caused great confusion to the
method which made it guess very wrong a lot of the times.

Figure 2: PCA of input data colored depending on corre-
sponding y-value

3. Method

The models and methods used are inspired by the work of
Diehl and Cook [2]. For the simulations we used the Brian
library in Python.

3.1. Input layer
Each "observation" in the training set consists of five con-
secutive values that we call firing rate. Over a period of T
ms the probability that a neuron will fire n times is given
by

PT (n) =
(λT)n

(λT)!
e−n.

The input data is scaled in such a way that λ = Xt is the
firing rate of the spike trains, so the scaling of the data is
crucial for the learning of the network.

3.2. Architecture
The input layer is connected to an excitatory layer through
a matrix of synapses. The neurons in the excitatory layer
integrates the spike trains and sends a spike train further
to the inhibitory neurons. Each Excitatory neuron has a
bijective, constant and strong connection to a inhibitory
neuron which makes it fire.

Figure 3: Network Architecture of the SNN

This causes a small, constant inhibition to all the other
excitatory neurons. This kind of architecture makes it

2

easier for individual neurons to adapt their receptive fields
to input, so that not all neurons adapt the same pattern.
The relative magnitude of the synaptic inhibition and the
synaptic weights from the input layer to the excitatory
neurons turned out to be a big driving factor for the learn-
ing quality, and these had to be fine-tuned by trials and
error.

3.3. Neuron Model
We are using the Leaky Fire and Integrator model of a
neuron. Each neuron is described by Kirchoffs law for
current.

Figure 4: Electrical circuit used to model individual neurons

C
dV

dt
= GL(EL − V (t)) +Ge

syn(t)(E
e
syn − V (t))

= Gi
syn(t)(E

i
syn − V (t)).

Here GL is the constant leakage conductance that causes
the resting potential to stay at EL. Gsyn on the other
hand depends on the property of the neuron and the ac-
tivity of presynaptic neuron.

Each neuron has a property called Vthresh, and if the mem-
brane potential of the neuron passes this level, the neuron
spikes and the voltages is set to Vreset. When the presy-
naptic neuron i fires, the conductance in the postsynaptic
neuron j increases with the weight wij , and in between
fires it relaxes towards zero following

τ
dGsyn

dt
= −Gsyn.

A presynaptic spike will cause the conductance to increase
and the voltage in the cell will relax towards Esyn which is
either higher or lower than EL for excititory and inhibitory
neurons respectively.

3.4. Learning
The learning of the network are properties of synapses.
Synapses strengthens or weakens its ability to conduct
signals depending on the relative timing of the pre- and

postsynaptic neuron.

When presynaptic neuron fires we have that the presy-
naptic trace changes to Apre = Apre + ∆Apre. Simi-
larly when the post-synaptic neuron fires we have Apost =
Apost +∆Apost. In between the firing both traces goes to
zero with their respective time constants.

The updating rule for the synaptic weight w is

∆w =

{
Apost pre-synaptic neuron fires
Apre post-synaptic neuron fires

Here it is important to notice that ∆Apre > 0 and ∆Apost <
0. We also set a max limit to the weight wmax, and enforce
that it cannot be less than zero.

Figure 5: Visual interpretation of STDP using traces. Most
presynaptic spikes in the image happen right before the postsy-
naptic spike which will cause the synaptic strength to increase.

Here is an example of a pulse being conducted through a
synapse resulting in an increse in the weight. If a presy-
naptic neuron fires, the value of Apre increases. Let us
assume that the postsynaptic neuron fires just after that.
Then ∆w = Apre when the post-synaptic neuron fires
which makes w increase by Apre which is still significant
and positive since the pre-synaptic neuron just fired. This
strengthens the synapse and makes it more likely that they
will fire together later. This is the principle of the saying
"fire together, wire together".

3.5. Evaluation and prediction
In the prediction step of the model we count the number
of spikes for each neuron in the exitatory layer. After the
training we do a Random Forest Classifier to match the
count of the layer to the real label. We then use our fit
from the classifier to predict the class of in the testing data
based on the firing rates of the exitatory neurons. The re-
sult is list of labels

3

In order to be able to evaluate the MSE of the prediction
we need a single value, not a range. The naive approach
to select a value the mean of the extreme values of the
boundary. However we know that most data is compact
around the mean, and sparse around the extreme values.
This knowledge maybe indicate that we should choose val-
ues closer to the mean of the time series in the range.

Assume that label l has upper limit of the range as U
and lower limit of range as P . In other words, when a pre-
diction has the label l we predict that the temperature is
on the interval [L,U]. This interval has a mean M = U+L

2
which can be looked upon as the center of the range. Let
µ = E[Xt] be the mean of the training time series. The
value of the prediction X̂ l

t+1 given a range therefore be-
comes

X̂ l
t+1 = (0.5 + p)U + (0.5− p)L,

p =

(
µ− U + L

2

)
1

max(Xt)−min(Xt)

where p ∈ (0, 0.5) tells how much we should weight the
upper and lower limit of the range.

When converting from labels to the predicted value we
should choose the value in the range corresponding to the
label that is most likely to happen.

Figure 6: We choose prediction value that is closer to the
mean than the middle of the prediction range

4. Simulation

I monitored the activity of the synapses and the neurons
throughout the training to get some idea of what is hap-
pening in the hidden layer. All the following plots are from
a test which had 500 neurons and 500 training data pre-
sented.

The first thing we should look at is the potential and the
firing rates of the neurons. Overall, on all the neurons
there should be a relative high firing rate, but if we look
at the individual neuron we should be able to see suppres-
sion happening so that it does not only integrate and fire
all the time.

Figure 7: Neuron 254 spiking followed by inhibition. Also see
an overview of all 500 neurons and their spikes in the 350ms
period intervals.

Secondly we can monitor how the weight changes and
what the resulting receptive field of the neurons are (how
the weights are distributed over the input neurons). The
weights are healthy if all weights do not converge to the
same number, and if the receptive fields are different so
that they pick up different patterns of the time series.

Figure 8: Synaptic strength after training from neurons to
the input layer

Figure 9: The value of the weight for a synapse changes every
time the postsynaptic neuron fires relative to the presynaptic
neuron

4

In the result section we will look at the quality of this
simulation after labeling.

5. Results

I trained the network for varying parameters such as num-
ber of neuron, number of training data and number of bins.

I used two typer of performance measure for the predic-
tion; Mean Squared Error (MSE) and percentage of correct
labeling. The MSE tells us how far off from the true 1-step
ahead value the prediction was, and the percentage tells
us how many of the predictions were within the correct
range. For the quality of labeling, the percentage is stan-
dard while the MSE is standard to measure the quality of
predictions.

We use AR(5) as comparison as this is most common way
to forecast given the five previous data points. For 100 day
prediction the MSE of AR(5) is 412. We also have that the
MSE between the 100 day predicted data and µ = E[Xt]
is 1430.

Below are the results from multiple tests.

Neurons MSE mean MSE drift Percentage
100 836.2 821.9 13,7
1000 693.2 670.8 18,1
3000 729.0 698 19,5

Table 1: Quality of predictions using 400 training data and
evaluating MSE of 100 datapoints and 10 bins

Training data MSE mean MSE drift Percentage
20 1307.0 1207.7 11,0
100 915.6 906.5 18,3
1000 822.0 787.1 17,8

Table 2: Quality of predictions using 100 neurons and evalu-
ating MSE of 100 datapoints and 10 bins

Bins MSE mean MSE drift Percentage
10 575.9 562.9 21,1
20 555.1 547.4 10,0
40 652.4 644.7 5,8

Table 3: Quality of predictions using 500 neurons, 2000 train-
ing data and evaluating MSE of 500 datapoints

5.1. Visual result of 500 neurons, 500 training simulation
Now we will present the results of the simulation described
in the previous section. This includes all the results that
we got after the labeling. Firstly, we present the confu-
sion matrix. The ideal outcome of the confusion matrix is

strong values along the diagonal, and fewer matches the
further we deviate from the diagonal.

Figure 10: Confusion matrix after labeling

As mentioned, the labels corresponds to a region in the
time series plot. We plot the prediction range with the
AR(5) prediction and the actual values.

We also plot a shorter time frame to see the effect of the
shifted predictor within the prediction range.

Figure 11: Plots showing the predictions compared to AR(5)
and the actual values

5

6. Discussion

From the PCA we learned that there were large overlap be-
tween the clusters. An unsupervised learning method such
as STDP performs surprisingly well. The performance on
the prediction highly depends on the physical properties of
the neurons, the architecture of the network, the learning
rule of the synapses and much more.

6.1. Quality of predictions
We notice from Table 1 that the number of neurons can-
not increase performance indefinitely. From 100 neurons
to 1000 neurons there is a big jump in percentage of cor-
rect labels and in the MSE. However from 1000 neurons
to 3000 neurons we did not see an increase in performance
over the two metrics. One of the reasons for this might
be that the training data is too small in comparison to
the number of neurons which make a large amount of the
receptive fields random (as this is their initial condition).
Within the 400 training data only a certain amount of the
neurons reach a good receptive field.

From Table 2 we see that the MSE is increased when
we increase the number of training data. This is espe-
cially clear from the jump from 20 to 100 data. However,
the MSE does not become much better from 100 to 1000
training data, and the percentage of correct labels is actu-
ally wrong. This might be because the receptive fields are
overstimulated by the amount of training data. The archi-
tecture of the SNN is created much so that each neuron
learn different patterns of the input. When the training
data is much larger than the number of neurons, the re-
ceptive field might become combinations of input patterns
which could reduce the percentage.

From Table 3 we see that when we increase the number
of bins, the percentage drops dramatically. This is obvi-
ous as the individual bins are slimmer. However the MSE
mean from 10 bins to 20 bins is only decreased sligthly,
and the MSE from 20 to 40 bins is increased. In order to
be able to trust the region somewhat, I would therefore
prefer 10 bins.

From all the tables we also notice that the MSE drift is
smaller than the MSE mean, and we conclude that it is a
good decision to not chooses the naive predictor, which is
the middle of the range.

Going further we notice that the confusion matrix shows a
hill around the middle. Most of the predicted values were
around the mean, and most of the truths ended up be-
ing around the mean. There is no clear strengthened line
along the diagonal, but rather something that looks like a
bivariate gaussian.

What is good about the confusion matrix is that there
are not many predictions on the edges were there are no

truths. This means that when we predict the wrong range,
the truth is often in one of the neighbouring ranges, which
is good for the MSE.

From the plots we notice that SNN prediction generally
follows the real data. This is very impressive and surpris-
ing given the unsupervised nature of the method. How-
ever, there are som massive 1-step errors in the plot. It
looks like the prediction sometimes completely misses by
4 ranges (labels), and then it picks itself back on track.
From the plot it looks like every 10th prediction is pretty
bad which likely account for most of the MSE error.

With 400 training data and 1000 neurons we managed to
get a MSE of 670.8. This is less than double the MSE
of the AR(5), and less than half of the trivial predictor
X̂T+1 = µ. The quality is therefore not comparable to
AR(5), but much better than trivial predictors.

6.2. Physical properties of the neurons
When creating a biological framework for a neural net-
work there are countless parameters that needs to be de-
termined. Each of the neurons has a threshold, a time
constant, a reset voltage, and so much more. Most of the
parameters were set to biological plausible values similar
to what the values would be for neurons in the brain, but
other had to be adjusted to increase the learning rate and
the predictive power.

One of the more important parameters is the maximum
conductivity gmax. It determines the maximum value of
the synaptic strength between the input layer and the ex-
citatory synapses. A large gmax made it easier for the
neurons to fire. If gmax is high, then the rate parameter
of the input spike train must be small, or else the neurons
in the excitatory level would be overstimulated. This ratio
turned out to be very important for the learning rate of
the model.

Also, the constant weight winhib from the inhibitory neu-
rons to the exitatory neurons were important for learning.
This value is a small percentage of gmax. If winhib is large
it will cause fewer spikes in the exitatory layer, but it will
also cause stronger lateral inhibition so that there is less
overlap between receptive fields.

6.3. Receptive Fields
As mentioned earlier, each of the excitatory neurons devel-
ops a receptive field for the input spike train, so that it is
sensitive to certain firing rates. For example, the receptive
field from excitatory neuron 254 to the input nodes has a
very clear pattern that it detects. For Xt and Xt−4 it has
large weights, while it has almost zero for the three values
in between.

6

Figure 12: The effect of the receptive field of neuron 254

From the illustration we see how the neuron’s receptive
field would function on a higher level, almost as a con-
volution of the input data time series. We see that the
highest firing rate is obtained when Xt and Xt−4 has large
values.

6.4. Architecture and Learning Rule
The architecture of the SNN does not take advantage of
the temporal structure of the input data. The temper-
ature tomorrow might depend on the temperature today
and yesterday. But the temperature today also depend on
the temperature yesterday. The input nodes could there-
fore with possible benefits be presented to the network in a
chronological manner. A normal way to capture this tem-
poral dependencies in neural networks are with recurrent
neural networks. For artificial neural networks we would
probably use this architecture, but it is harder to incorpo-
rate with SNN.

STDP is a local learning rule and in the architecture used
in this project there is essentially only one layer, and only
one layer of neurons that are being trained. This means
that the local training of the synapses basically is a global
training. When extending this to more layers there arises
some problems. As mentioned, STDP is a local learning
rule, so for a network with more layers, the local training
will not necessary lead to productive global training.

Also in SNN, it is hard to determine how much each neu-
ron from the input contribute to the final output. I tried
implementing an RNN structure and discovered that it
was incredible difficult to know wheather or not the signal
from Xt−4 had propagated through four layers of neurons
or if the value had been neglected. It also required very
precise tuning of variables so that the firing rate would not
diverge or dilute from layer to layer.

However there are possible better ways one can incorpo-
rate a RNN structure to SNN. These include changing from
STDP to another learning rule that is not local. There are
many learning rules for SNN, but the one that might be the
most popular is ANN-to-SNN Conversion[3]. This method

trains the network with ANN, and then converts it to SNN.
For time series forcasting, ANN-to-SNN conversion would
be a great learning rule, but in general there are down-
sides to this as well. Firstly, the learning of the neurons
no longer imitate biologican plasticity. Secondly, super-
vised learning is less flexible than unsupervised learning
and require labels during training.

6.5. Use cases
A possible use case for the SNN model are boolean-related
forecast predictions. The first thing that comes to mind
is to predict weather a stock will go up or down the next
day. Input variables can be parameters such as open, close,
high, low and volume for the past two days. Based on these
input variables (and maybe more) we predict weather the
stock price goes up or down. An AR model would probably
not do better than random guesses because of the efficient
market hypothesis that states that the current price is the
sum of all prior knowledge and that it is impossible to
have a non-trivial forecast based on past values. However,
the SNN can include parameters other than the value of a
stock and bin it into two categories: up and down.

7. Conclusion

Exploration of spiking neural networks and STDP used
for time series prediction have provided insight into the
dynamics of a network imitating biological neurons. The
analysis showed that despite overlap between clusters in
the PCA, the network managed to achive descent results.
The parameters involved in the training were heavily con-
tributing to the quality of the predictions. With too much
training data it seems that the receptive fields are being
overwritten and noisy, not improving the MSE, and too
many neurons ended up having many untrained neurons.
This insinuated that performance would be maximized
with somewhat similar level of training data and neurons.
The ratio between firing rate of input, max weight of neu-
rons, and the magnitude of the lateral inhibition also dra-
matically changed the outcome of the training.

The architecture of the network is probably the most in-
fluential aspects of the training and prediction, and it is
not trivial to change. Recurrent neural network might be
a reasonable architecture to try out, but it might require
a supervised learning rule. In terms of MSE in forecast-
ing, the current architecture was worse than AR(5), but
an adjusted version of the model might do well in predict-
ing weather a stock will go up or down (2 bins).

There is a big development in Brain Computer Interfaces,
and SNN together with neuromorphic engineering have the
ability to be in the frontier of this revolution. Also neuro-
morphic chips have the potential to be much more energy
effective than normal computers. Although the technology
is probably not that good in weather forecasting, it might
play a role in treating neurological diseases.

7

8. Acknowledgments

I would like to express my gratitude to Adnan Rebei, my
professor in Introduction to Neural Computation, for in-
troducing me to the paper by Diehl and Cook. His sup-
port and discussions have been invaluable throughout the
research.

References

[1] Yu Qi, Jiajun Chen, Yueming Wang. Jiajun Neuromorphic
computing facilitates deep brain-machine fusion for high-
performance neuroprosthesis. Frontiers in Computational Neu-
roscience, 17, 2023.

[2] Peter U. Diehl and Matthew Cook. Unsupervised Learning
of Digit Recognition Using Spike-Timing-Dependent Plasticity.
Frontiers in Computational Neuroscience, 9, 2015.

[3] Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara and Ngan
Le. Spiking Neural Networks and Their Applications: A Review.
MDPI, 2022.

8

	Introduction
	Background - Time Series
	Background - Computational Neuroscience
	Problem Formulation & Motivation

	Data
	Selecting bins

	Method
	Input layer
	Architecture
	Neuron Model
	Learning
	Evaluation and prediction

	Simulation
	Results
	Visual result of 500 neurons, 500 training simulation

	Discussion
	Quality of predictions
	Physical properties of the neurons
	Receptive Fields
	Architecture and Learning Rule
	Use cases

	Conclusion
	Acknowledgments

